Polymerization pattern characterization within a resin-based composite cured using different curing units at two distances

Abstract

Objectives

To investigate the relationship of the irradiance-beam-profile areas from six different light-curing units (LCUs) with the degree of conversion (DC), microhardness (KH), and cross-link density (CLD) throughout a resin-based composite (RBC) cured at two clinically relevant distances, and to explore the correlations among them.

Materials and methods

A mapping approach was used to measure DC using micro-Raman spectroscopy, KH using a Knoop indentor on a hardness tester, and %KH reduction after ethanol exposure, as an indicator for CLD within a nano-hybrid RBC increment (n = 3) at various depths. These sample composites were cured from two distances while maintaining the radiant exposure, using six different light-curing units: one quartz-tungsten-halogen; two single and three multiple-emission-peak light-emitting-diode units. Irradiance beam profiles were generated for each LCU at both distances, and localized irradiance values were calculated. Points across each depth were analyzed using repeated measures ANOVA. Correlations across multiple specimen locations and associations between beam uniformity corresponding with polymerization measurements were calculated using linear mixed models and Pearson correlation coefficients.

Results

Significant non-uniform polymerization patterns occurred within the specimens at various locations and depths. At 2-mm curing distance, the localized DC = 52.7–76.8%, KH = 39.0–66.7 kg/mm2, and %KH reduction = 26.7–57.9%. At 8-mm curing distance, the localized DC = 50.4–78.6%, KH = 40.3–73.7 kg/mm2, and %KH reduction = 28.2–56.8%. The localized irradiance values were weakly correlated with the corresponding DC, KH, and %KH reduction, with only a few significant correlations (p < 0.05).

Conclusions

Although significant differences were observed at each depth within the specimens, the localized irradiance values for all LCUs did not reflect the polymerization pattern and did not seem to have a major influence on polymerization patterns within the RBC, regardless of the curing distance.

Clinical relevance

Commonly used LCUs do not produce uniform polymerization regardless of the curing distance, which may contribute to the risk of RBC fracture.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Demarco FF, Collares K, Coelho-de-Souza FH, Correa MB, Cenci MS, Moraes RR, Opdam NJ (2015) Anterior composite restorations: a systematic review on long-term survival and reasons for failure. Dent Mater 31:1214–1224. https://doi.org/10.1016/j.dental.2015.07.005

    Article  PubMed  Google Scholar 

  2. 2.

    Alvanforoush N, Palamara J, Wong RH, Burrow MF (2017) Comparison between published clinical success of direct resin composite restorations in vital posterior teeth in 1995-2005 and 2006-2016 periods. Aust Dent J 62:132–145. https://doi.org/10.1111/adj.12487

    Article  PubMed  Google Scholar 

  3. 3.

    Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G (2013) Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater 29:139–156. https://doi.org/10.1016/j.dental.2012.11.005

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ferracane JL (2013) Resin-based composite performance: are there some things we can’t predict? Dent Mater 29:51–58. https://doi.org/10.1016/j.dental.2012.06.013

    Article  PubMed  Google Scholar 

  5. 5.

    Cramer NB, Stansbury JW, Bowman CN (2011) Recent advances and developments in composite dental restorative materials. J Dent Res 90:402–416. https://doi.org/10.1177/0022034510381263

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Ferracane JL, Mitchem JC, Condon JR, Todd R (1997) Wear and marginal breakdown of composites with various degrees of cure. J Dent Res 76:1508–1516

    Article  Google Scholar 

  7. 7.

    Soh MS, Yap AU (2004) Influence of curing modes on crosslink density in polymer structures. J Dent 32:321–326. https://doi.org/10.1016/j.jdent.2004.01.012

    Article  PubMed  Google Scholar 

  8. 8.

    Li J, Li H, Fok AS, Watts DC (2009) Multiple correlations of material parameters of light-cured dental composites. Dent Mater 25:829–836. https://doi.org/10.1016/j.dental.2009.03.011

    Article  PubMed  Google Scholar 

  9. 9.

    Durner J, Obermaier J, Draenert M, Ilie N (2012) Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent Mater 28:1146–1153. https://doi.org/10.1016/j.dental.2012.08.006

    Article  PubMed  Google Scholar 

  10. 10.

    Santini A, Miletic V, Swift MD, Bradley M (2012) Degree of conversion and microhardness of TPO-containing resin-based composites cured by polywave and monowave LED units. J Dent 40:577–584. https://doi.org/10.1016/j.jdent.2012.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Leprince JG, Leveque P, Nysten B, Gallez B, Devaux J, Leloup G (2012) New insight into the “depth of cure” of dimethacrylate-based dental composites. Dent Mater 28:512–520. https://doi.org/10.1016/j.dental.2011.12.004

    Article  PubMed  Google Scholar 

  12. 12.

    Selig D, Haenel T, Hausnerova B, Moeginger B, Labrie D, Sullivan B, Price RB (2015) Examining exposure reciprocity in a resin based composite using high irradiance levels and real-time degree of conversion values. Dent Mater 31:583–593. https://doi.org/10.1016/j.dental.2015.02.010

    Article  PubMed  Google Scholar 

  13. 13.

    Rencz A, Hickel R, Ilie N (2012) Curing efficiency of modern LED units. Clin Oral Investig 16:173–179. https://doi.org/10.1007/s00784-010-0498-3

    Article  PubMed  Google Scholar 

  14. 14.

    Ilie N, Stark K (2014) Curing behaviour of high-viscosity bulk-fill composites. J Dent 42:977–985. https://doi.org/10.1016/j.jdent.2014.05.012

    Article  PubMed  Google Scholar 

  15. 15.

    Schneider LF, Moraes RR, Cavalcante LM, Sinhoreti MA, Correr-Sobrinho L, Consani S (2008) Cross-link density evaluation through softening tests: effect of ethanol concentration. Dent Mater 24:199–203. https://doi.org/10.1016/j.dental.2007.03.010

    Article  PubMed  Google Scholar 

  16. 16.

    Alshali RZ, Salim NA, Satterthwaite JD, Silikas N (2015) Post-irradiation hardness development, chemical softening, and thermal stability of bulk-fill and conventional resin-composites. J Dent 43:209–218. https://doi.org/10.1016/j.jdent.2014.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Yap AU, Soh MS, Han TT, Siow KS (2004) Influence of curing lights and modes on cross-link density of dental composites. Oper Dent 29:410–415

    PubMed  Google Scholar 

  18. 18.

    Price RB, Ferracane JL, Shortall AC (2015) Light-curing units: a review of what we need to know. J Dent Res 94:1179–1186. https://doi.org/10.1177/0022034515594786

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Rueggeberg FA (2011) State-of-the-art: dental photocuring--a review. Dent Mater 27:39–52. https://doi.org/10.1016/j.dental.2010.10.021

    Article  PubMed  Google Scholar 

  20. 20.

    Rueggeberg FA, Giannini M, Arrais CAG, Price RBT (2017) Light curing in dentistry and clinical implications: a literature review. Braz Oral Res 31:e61. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0061

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Megremis SJ, Ong V, Lukic H, Shepelak H (2014) An ada laboratory evaluation of light-emitting diode curing units. J Am Dent Assoc 145:1164–1166. https://doi.org/10.14219/jada.2014.97

    Article  PubMed  Google Scholar 

  22. 22.

    Jandt KD, Mills RW (2013) A brief history of LED photopolymerization. Dent Mater 29:605–617. https://doi.org/10.1016/j.dental.2013.02.003

    Article  PubMed  Google Scholar 

  23. 23.

    Harlow JE, Sullivan B, Shortall AC, Labrie D, Price RB (2016) Characterizing the output settings of dental curing lights. J Dent 44:20–26. https://doi.org/10.1016/j.jdent.2015.10.019

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Michaud PL, Price RB, Labrie D, Rueggeberg FA, Sullivan B (2014) Localised irradiance distribution found in dental light curing units. J Dent 42:129–139. https://doi.org/10.1016/j.jdent.2013.11.014

    Article  PubMed  Google Scholar 

  25. 25.

    Price RB, Labrie D, Rueggeberg FA, Sullivan B, Kostylev I, Fahey J (2014) Correlation between the beam profile from a curing light and the microhardness of four resins. Dent Mater 30:1345–1357. https://doi.org/10.1016/j.dental.2014.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Haenel T, Hausnerova B, Steinhaus J, Price RB, Sullivan B, Moeginger B (2015) Effect of the irradiance distribution from light curing units on the local micro-hardness of the surface of dental resins. Dent Mater 31:93–104. https://doi.org/10.1016/j.dental.2014.11.003

    Article  PubMed  Google Scholar 

  27. 27.

    Price RB, Fahey J, Felix CM (2010) Knoop microhardness mapping used to compare the efficacy of LED, QTH and PAC curing lights. Oper Dent 35:58–68. https://doi.org/10.2341/09-055-L

    Article  PubMed  Google Scholar 

  28. 28.

    Platt JA, Price RB (2014) Light curing explored in Halifax. Oper Dent 39:561–563. https://doi.org/10.2341/1559-2863-39.6.561

    Article  PubMed  Google Scholar 

  29. 29.

    Price RB, Labrie D, Whalen JM, Felix CM (2011) Effect of distance on irradiance and beam homogeneity from 4 light-emitting diode curing units. J Can Dent Assoc 77:b9

    PubMed  Google Scholar 

  30. 30.

    Al-Zain AO, Eckert GJ, Lukic H, Megremis SJ, Platt JA (2018) Degree of conversion and cross-link density within a resin-matrix composite. J Biomed Mater Res B Appl Biomater 106:1496–1504. https://doi.org/10.1002/jbm.b.33960

    Article  PubMed  Google Scholar 

  31. 31.

    Albino LG, Rodrigues JA, Kawano Y, Cassoni A (2011) Knoop microhardness and FT-Raman evaluation of composite resins: influence of opacity and photoactivation source. Braz Oral Res 25:267–273

    Article  Google Scholar 

  32. 32.

    Palin WM, Senyilmaz DP, Marquis PM, Shortall AC (2008) Cure width potential for MOD resin composite molar restorations. Dent Mater 24:1083–1094. https://doi.org/10.1016/j.dental.2008.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Mousavinasab SM, Meyers I (2011) Comparison of depth of cure, hardness and heat generation of LED and high intensity QTH light sources. Eur J Dent 5:299–304

    Article  Google Scholar 

  34. 34.

    Beun S, Bailly C, Dabin A, Vreven J, Devaux J, Leloup G (2009) Rheological properties of experimental Bis-GMA/TEGDMA flowable resin composites with various macrofiller/microfiller ratio. Dent Mater 25:198–205. https://doi.org/10.1016/j.dental.2008.06.001

    Article  PubMed  Google Scholar 

  35. 35.

    Leprince JG, Hadis M, Shortall AC, Ferracane JL, Devaux J, Leloup G, Palin WM (2011) Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dent Mater 27:157–164. https://doi.org/10.1016/j.dental.2010.09.011

    Article  PubMed  Google Scholar 

  36. 36.

    Vasudeva G (2009) Monomer systems for dental composites and their future: a review. J Calif Dent Assoc 37:389–398

    PubMed  Google Scholar 

  37. 37.

    Watts DC, Cash AJ (1994) Analysis of optical transmission by 400-500 nm visible light into aesthetic dental biomaterials. J Dent 22:112–117

    Article  Google Scholar 

  38. 38.

    Ikemura K, Endo T (2010) A review of the development of radical photopolymerization initiators used for designing light-curing dental adhesives and resin composites. Dent Mater J 29:481–501

    Article  Google Scholar 

  39. 39.

    Vaidyanathan TK, Vaidyanathan J, Lizymol PP, Ariya S, Krishnan KV (2017) Study of visible light activated polymerization in BisGMA-TEGDMA monomers with type 1 and type 2 photoinitiators using Raman spectroscopy. Dent Mater 33:1–11. https://doi.org/10.1016/j.dental.2016.09.002

    Article  PubMed  Google Scholar 

  40. 40.

    Sampaio CS, Atria PJ, Rueggeberg FA, Yamaguchi S, Giannini M, Coelho PG, Hirata R, Puppin-Rontani RM (2017) Effect of blue and violet light on polymerization shrinkage vectors of a CQ/TPO-containing composite. Dent Mater 33:796–804. https://doi.org/10.1016/j.dental.2017.04.010

    Article  PubMed  Google Scholar 

  41. 41.

    Moore BK, Platt JA, Borges G, Chu TM, Katsilieri I (2008) Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent 33:408–412. https://doi.org/10.2341/07-104

    Article  PubMed  Google Scholar 

  42. 42.

    Corciolani G, Vichi A, Davidson CL, Ferrari M (2008) The influence of tip geometry and distance on light-curing efficacy. Oper Dent 33:325–331. https://doi.org/10.2341/07-94

    Article  PubMed  Google Scholar 

  43. 43.

    ISO (2007) 10650-2:2007 dentistry-powered polymerizationactivators: part 2: light-emitting diode (LED) lamps. Geneva,Switzerland: International Standards Organization.:7

  44. 44.

    Harlow JE, Rueggeberg FA, Labrie D, Sullivan B, Price RB (2016) Transmission of violet and blue light through conventional (layered) and bulk cured resin-based composites. J Dent 53:44–50. https://doi.org/10.1016/j.jdent.2016.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Shimokawa C, Sullivan B, Turbino ML, Soares CJ, Price RB (2017) Influence of emission spectrum and irradiance on light curing of resin-based composites. Oper Dent 42:537–547. https://doi.org/10.2341/16-349-L

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work is part of the PhD dissertation for Dr. A. O. Al-Zain. The scholarship support from King Abdulaziz University, Jeddah, Saudi Arabia, and the technical assistance received from UITS/PTI Advanced Visualization Lab at Indiana University are acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Afnan O. Al-Zain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2696 kb)

ESM 2

(DOCX 15 kb)

ESM 3

(DOCX 17 kb)

ESM 4

(DOCX 16 kb)

ESM 5

(DOCX 54 kb)

ESM 6

(DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Zain, A.O., Eckert, G.J., Lukic, H. et al. Polymerization pattern characterization within a resin-based composite cured using different curing units at two distances. Clin Oral Invest 23, 3995–4010 (2019). https://doi.org/10.1007/s00784-019-02831-1

Download citation

Keywords

  • Degree of conversion
  • Microhardness
  • Cross-link density
  • Resin composite
  • Beam profile
  • Light-curing unit