Skip to main content

Advertisement

Log in

Detection of pulsed blood flow through a molar pulp chamber and surrounding tissue in vitro

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Due to severe limitations of dental pulp sensitivity tests, the direct recording of pulsed blood flow, using photoplethysmography (PPG), has been proposed. In vivo evaluation is methodologically difficult and in vitro models have hitherto been adversely influenced by shortcomings in emulating the in vivo situation. Consequently, the aim of this study was to test an improved data acquisition system and to use this configuration for recording pulsed blood in a new model.

Materials and methods

We introduced a PPG signal detection system by recording signals under different blood flow conditions at two wavelengths (625 and 940 nm). Pulsed blood flow signals were measured using an in vitro model, containing a molar with a glass pulp and a resin socket, which closely resembled in vivo conditions with regard to volumetric blood flow, pulp anatomy, and surrounding tissue.

Results

The detection system showed improved signal strength without stronger blanketing of noise. On the tooth surface, it was possible to detect signals emanating from pulsed blood flow from the glass pulp and from surrounding tissue at 625 nm. At 940 nm, pulp derived signals were recorded, without interference signals from surrounding tissue.

Conclusion

The PPG-based method has the potential to detect pulsed blood flow in small volumes in the pulp and (at 625 nm) also in adjacent tissues.

Clinical relevance

The results show the need for clear differentiation of the spatial origins of blood flow signals of any vitality test method to be applied to teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Levin LG (2013) Pulp and Periradicular testing. J Endod 39:S13–S19. https://doi.org/10.1016/j.joen.2012.11.047

    Article  PubMed  Google Scholar 

  2. Mejàre IA, Axelsson S, Davidson T et al (2012) Diagnosis of the condition of the dental pulp: a systematic review. Int Endod J 45:597–613. https://doi.org/10.1111/j.1365-2591.2012.02016.x

    Article  PubMed  Google Scholar 

  3. Chen E, Abbott PV (2009) Dental pulp testing: a review. Int J Dent 2009:365785–365712. https://doi.org/10.1155/2009/365785

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yu C, Abbott PV (2007) An overview of the dental pulp: its functions and responses to injury. Aust Dent J 52:S4–S6. https://doi.org/10.1111/j.1834-7819.2007.tb00525.x

    Article  PubMed  Google Scholar 

  5. Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28:R1–R39. https://doi.org/10.1088/0967-3334/28/3/R01

    Article  PubMed  Google Scholar 

  6. Fein ME, Gluskin AH, Goon WW et al (1997) Evaluation of optical methods of detecting dental pulp vitality. J Biomed Opt 2:58–73. https://doi.org/10.1117/12.261679

    Article  PubMed  Google Scholar 

  7. Oikarinen KS, Kainulainen V, Särkelä V et al (1997) Information of circulation from soft tissue and dental pulp by means of pulsatile reflected light: further development of optical pulp vitalometry. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 84:315–320

    Article  PubMed  Google Scholar 

  8. Carlson KA, Jahr JS (1993) A historical overview and update on pulse oximetry. Anesthesiol Rev 20:173–181

    PubMed  Google Scholar 

  9. Jafarzadeh H, Rosenberg PA (2009) Pulse oximetry: review of a potential aid in endodontic diagnosis. J Endod 35:329–333. https://doi.org/10.1016/j.joen.2008.12.006

    Article  PubMed  Google Scholar 

  10. Schnettler JM, Wallace JA (1991) Pulse oximetry as a diagnostic tool of pulpal vitality. J Endod 17:488–490. https://doi.org/10.1016/S0099-2399(06)81795-4

    Article  PubMed  Google Scholar 

  11. Jafarzadeh H (2009) Laser Doppler flowmetry in endodontics: a review. Int Endod J 42:476–490. https://doi.org/10.1111/j.1365-2591.2009.01548.x

    Article  PubMed  Google Scholar 

  12. Kimura Y, Wilder-Smith P, Matsumoto K (2000) Lasers in endodontics: a review. Int Endod J 33:173–185

    Article  PubMed  Google Scholar 

  13. Dick SK, Chistyakova GG, Terekh AS et al (2014) Characterization of blood flow rate in dental pulp by speckle patterns of backscattered light from an in vivo tooth. J Biomed Opt 19:106012. https://doi.org/10.1117/1.JBO.19.10.106012

    Article  PubMed  Google Scholar 

  14. Stoianovici C, Wilder-Smith P, Choi B (2011) Assessment of pulpal vitality using laser speckle imaging. Lasers Surg Med 43:833–837. https://doi.org/10.1002/lsm.21090

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yoon M-J, Kim E, Lee S-J et al (2010) Pulpal blood flow measurement with ultrasound Doppler imaging. J Endod 36:419–422. https://doi.org/10.1016/j.joen.2009.12.031

    Article  PubMed  Google Scholar 

  16. Cho Y-W, Park S-H (2014) Use of ultrasound Doppler to determine tooth vitality in a discolored tooth after traumatic injury: its prospects and limitations. Restor Dent Endod 39:68–73. https://doi.org/10.5395/rde.2014.39.1.68

    Article  PubMed  PubMed Central  Google Scholar 

  17. Niklas A, Hiller KA, Jaeger A et al (2014) In vitro optical detection of simulated blood pulse in a human tooth pulp model. Clin Oral Investig 18:1401–1409. https://doi.org/10.1007/s00784-013-1115-z

    Article  PubMed  Google Scholar 

  18. Miwa Z, Ikawa M, Iijima H et al (2002) Pulpal blood flow in vital and nonvital young permanent teeth measured by transmitted-light photoplethysmography: a pilot study. Pediatr Dent 24:594–598

    PubMed  Google Scholar 

  19. Karayilmaz H, Kirzioğlu Z (2011) Comparison of the reliability of laser Doppler flowmetry, pulse oximetry and electric pulp tester in assessing the pulp vitality of human teeth. J Oral Rehabil 38:340–347. https://doi.org/10.1111/j.1365-2842.2010.02160.x

    Article  PubMed  Google Scholar 

  20. Siddheswaran V, Adyanthaya R, Shivanna V (2011) Pulse oximetry: a diagnostic instrument in pulpal vitality testing—an in vivo study. World J Dent 2:225–230

    Article  Google Scholar 

  21. Ingólfsson AR, Tronstad L, Hersh EV, Riva CE (1994) Efficacy of laser Doppler flowmetry in determining pulp vitality of human teeth. Endod Dent Traumatol 10:83–87

    Article  PubMed  Google Scholar 

  22. Polat S, Er K, Akpinar KE, Polat NT (2004) The sources of laser Doppler blood-flow signals recorded from vital and root canal treated teeth. Arch Oral Biol 49:53–57. https://doi.org/10.1016/S0003-9969(03)00197-3

    Article  PubMed  Google Scholar 

  23. Soo-ampon S, Vongsavan N, Soo-ampon M et al (2003) The sources of laser Doppler blood-flow signals recorded from human teeth. Arch Oral Biol 48:353–360. https://doi.org/10.1016/S0003-9969(03)00011-6

    Article  PubMed  Google Scholar 

  24. Akpinar KE, Er K, Polat S, Polat NT (2004) Effect of gingiva on laser Doppler pulpal blood flow measurements. J Endod 30:138–140. https://doi.org/10.1097/00004770-200403000-00003

    Article  PubMed  Google Scholar 

  25. Hartmann A, Azérad J, Boucher Y (1996) Environmental effects on laser Doppler pulpal blood-flow measurements in man. Arch Oral Biol 41:333–339. https://doi.org/10.1016/0003-9969(95)00133-6

    Article  PubMed  Google Scholar 

  26. Roebuck EM, Evans DJP, Stirrups D, Strang R (2001) The effect of wavelength, bandwidth, and probe design and position on assessing the vitality of anterior teeth with laser Doppler flowmetry. Int J Pediatr Dent 10:213–220. https://doi.org/10.1046/j.1365-263x.2000.00194.x

    Article  Google Scholar 

  27. Polat S, Er K, Polat NT (2005) Penetration depth of laser Doppler flowmetry beam in teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100:125–129. https://doi.org/10.1016/j.tripleo.2004.11.018

    Article  PubMed  Google Scholar 

  28. Ikawa M, Vongsavan N, Horiuchi H (1999) Scattering of laser light directed onto the labial surface of extracted human upper central incisors. J Endod 25:483–485. https://doi.org/10.1016/S0099-2399(99)80286-6

    Article  PubMed  Google Scholar 

  29. Kakino S, Miwa Z, Kirimoto A, et al (2007) A new multi-wavelength optical-plethysmograph for quantitative determination of pulpal hemoglobin content and oxygen level using green and near-infrared LEDs. Proc SPIE 6425:642508–642508–9. doi: https://doi.org/10.1117/12.699628

  30. Kakino S, Kushibiki S, Yamada A, Miwa Z (2013) Optical measurement of blood oxygen saturation of dental pulp. ISRN Biomed Eng 2013:1–6. https://doi.org/10.1155/2013/502869

    Article  Google Scholar 

  31. Lindberg L-G, Öberg PA (1993) Optical properties of blood in motion. Opt Eng 32:253–257. https://doi.org/10.1117/12.60688

    Article  Google Scholar 

  32. Kim S (1985) Microcirculation of the dental pulp in health and disease. J Endod 11:465–471. https://doi.org/10.1016/S0099-2399(85)80219-3

    Article  PubMed  Google Scholar 

  33. Path MG, Meyer MW (1980) Heterogeneity of blood flow in the canine tooth in the dog. Arch Oral Biol 25:83–86. https://doi.org/10.1016/0003-9969(80)90081-3

    Article  PubMed  Google Scholar 

  34. Hock J, Nuki K, Schlenker R, Hawks A (1980) Clearance rates of Xenon-133 in non-inflamed and inflamed gingiva of dogs. Arch Oral Biol 25:445–449. https://doi.org/10.1016/0003-9969(80)90050-3

    Article  PubMed  Google Scholar 

  35. Schulz I, Putzger J, Niklas A, et al PPG signal acquisition and analysis on in vitro tooth model for dental pulp vitality assessment. ARC 2012. Submission 16

  36. Hiller K-A, Christa T, Niklas A et al (2013) An in-vitro-model of a human jaw for testing optical properties. J Dent Res 92(Spec. Issue A):3716

  37. Diaz-Arnold AM, Wilcox LR, Arnold MA (1994) Optical detection of pulpal blood. J Endod 20:164–168. https://doi.org/10.1016/S0099-2399(06)80327-4

    Article  PubMed  Google Scholar 

  38. Kahan RS, Gulabivala K, Snook M, Setchell DJ (1996) Evaluation of a pulse oximeter and customized probe for pulp vitality testing. J Endod 22:105–109. https://doi.org/10.1016/S0099-2399(96)80283-4

    Article  PubMed  Google Scholar 

  39. Friebel M, Roggan A, Müller G, Meinke M (2006) Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. J Biomed Opt 11:034021. https://doi.org/10.1117/1.2203659

    Article  Google Scholar 

  40. Vongsavan N, Matthews B (1993) Experiments on extracted teeth into the validity of using laser Doppler techniques for recording pulpal blood flow. Arch Oral Biol 38:431–439. https://doi.org/10.1016/0003-9969(93)90215-8

    Article  PubMed  Google Scholar 

  41. Margolis J (1957) Initiation of blood coagulation by glass and related surfaces. J Physiol 137:95–109

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ketterl W (1983) Age-induced changes in the teeth and their attachment apparatus. Int Dent J 33:262–271

    PubMed  Google Scholar 

  43. Benedict RP (1984) Fundamentals of temperature, pressure and flow measurements. John Wiley & Sons

  44. Oikarinen K, Kopola H, Mäkiniemi M, Herrala E (1996) Detection of pulse in oral mucosa and dental pulp by means of optical reflection method. Endod Dent Traumatol 12:54–59

    Article  PubMed  Google Scholar 

  45. Hoke JA, Burkes EJ, White JT et al (1994) Blood-flow mapping of oral tissues by laser Doppler flowmetry. Int J Oral Maxillofac Surg 23:312–315. https://doi.org/10.1016/S0901-5027(05)80117-1

    Article  PubMed  Google Scholar 

  46. Hirmer M, Danilov SN, Giglberger S et al (2012) Spectroscopic study of human teeth and blood from visible to terahertz frequencies for clinical diagnosis of dental pulp vitality. J Infrared Milli Terahz Waves 33:366–375. https://doi.org/10.1007/s10762-012-9872-3

    Article  Google Scholar 

  47. Ganichev S, Prettl W (2006) Intense terahertz excitation of semiconductors. Oxford University Press on Demand

  48. Olbrich P, Karch J, Ivchenko EL et al (2011) Classical ratchet effects in heterostructures with a lateral periodic potential. Phys Rev B 83:165320. https://doi.org/10.1103/PhysRevB.83.165320

    Article  Google Scholar 

  49. Lechner V, Golub LE, Olbrich P et al (2009) Tuning of structure inversion asymmetry by the δ-doping position in (001)-grown GaAs quantum wells. Appl Phys Lett 94:242109. https://doi.org/10.1063/1.3156027

    Article  Google Scholar 

  50. Alfano R, Lam W, Zarrabi H et al (1984) Human teeth with and without caries studied by laser scattering, fluorescence, and absorption spectroscopy. IEEE J Quantum Electron 20:1512–1516. https://doi.org/10.1109/JQE.1984.1072351

    Article  Google Scholar 

  51. Ikawa M, Horiuchi H, Ikawa K (1994) Optical characteristics of human extracted teeth and the possible application of photoplethysmography to the human pulp. Arch Oral Biol 39:821–827. https://doi.org/10.1016/0003-9969(94)90012-4

    Article  PubMed  Google Scholar 

  52. Hammer M, Schweitzer D, Michel B et al (1998) Single scattering by red blood cells. Appl Opt 37:7410–7418

    Article  PubMed  Google Scholar 

  53. Meinke M, Müller G, Helfmann J, Friebel M (2007) Empirical model functions to calculate hematocrit-dependent optical properties of human blood. Appl Opt 46:1742–1753

    Article  PubMed  Google Scholar 

  54. Huerre A, Jullien MC, Theodoly O, Valignat MP (2016) Absolute 3D reconstruction of thin films topography in microfluidic channels by interference reflection microscopy. Lab Chip 16:911–916. https://doi.org/10.1039/C5LC01417D

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the DFG projects (SCHM 386/3, GA-501/10 and MO 2196/1), the Linkage Grant of IB of BMBF at DLR and OTH-Regensburg Applications Center “Miniaturisierte Sensorik” (SappZ) funded by the Bavarian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Schmalz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knörzer, S., Hiller, KA., Brandt, M. et al. Detection of pulsed blood flow through a molar pulp chamber and surrounding tissue in vitro. Clin Oral Invest 23, 1121–1132 (2019). https://doi.org/10.1007/s00784-018-2530-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-018-2530-y

Keywords

Navigation