Advertisement

Clinical Oral Investigations

, Volume 22, Issue 6, pp 2251–2262 | Cite as

A comparison of cell survival and heat shock protein expression after radiation in normal dermal fibroblasts, microvascular endothelial cells, and different head and neck squamous carcinoma cell lines

  • Dominique Muschter
  • Fabian Geyer
  • Richard Bauer
  • Tobias Ettl
  • Stephan Schreml
  • Frank Haubner
Original Article
  • 240 Downloads

Abstract

Objectives

Head and neck squamous cell carcinoma (HNSCC) shows increased radioresistance due to the manipulation of homeostatic mechanisms like the heat shock response. This study intended to comparatively analyze effects of ionizing radiation on different HNSCC cell lines (PCI) and normal human dermal fibroblasts (NHFs) and human dermal microvascular endothelial cells (HDMECs) to uncover differences in radiation coping strategies.

Materials and methods

Proliferation (BrdU assay), apoptosis (caspase 3/7) and intracellular protein expression of heat shock protein (HSP)-70, and phosphorylated and total HSP27, determined by enzyme-linked immunosorbent assay (ELISA), were analyzed after exposure to increasing doses of ionizing radiation (2, 6, and 12 Gray, Gy).

Results

Cell count decreased dose-dependently, but PCI cell lines consistently showed higher numbers compared to NHF and HDMEC. Likewise, high doses reduced cell proliferation, but low-dose radiation (2 Gy) instead increased proliferation in PCI 9 and 52. Apoptosis was not detectable in PCI cell lines. Basic HSP70 expression was high in PCI cells with little additional increase by irradiation. PCI cells yielded high basic total HSP27 concentrations but irradiation dose-dependently increased HSP27 in HDMEC, NHF, and PCI cells. Phosphorylated HSP27 concentrations were highest in NHF.

Conclusion

PCI cell lines showed higher resistance to dose-dependent reduction in cell number, proliferation, and protection from apoptosis compared to NHF and HDMEC. In parallel, we observed a high basic and radiation-induced expression of intracellular HSP70 leading to the assumption that the radioresistance of PCI cells is conferred by HSP70.

Clinical relevance

HNSCC use HSP to escape radiation-induced apoptosis and certain subtypes might increase proliferation after low-dose irradiation.

Keywords

Head and neck squamous cell carcinoma Heat shock response Dermal fibroblast Microvascular endothelial cells Radiotherapy 

Notes

Acknowledgements

We thank Petra Eberl for her excellent technical assistance.

Funding

The work was supported by the Department of Otorhinolaryngology of University Medical Center Regensburg, Germany.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

References

  1. 1.
    Huang SH, O'Sullivan B (2013) Oral cancer: current role of radiotherapy and chemotherapy. Med Oral Patol Oral Cir Bucal 18(2):e233–e240PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Choong N, Vokes E (2008) Expanding role of the medical oncologist in the management of head and neck cancer. CA Cancer J Clin 58(1):32–53.  https://doi.org/10.3322/ca.2007.0004 PubMedCrossRefGoogle Scholar
  3. 3.
    Banerjee S, Lin CF, Skinner KA, Schiffhauer LM, Peacock J, Hicks DG, Redmond EM, Morrow D, Huston A, Shayne M, Langstein HN, Miller-Graziano CL, Strickland J, O'Donoghue L, De AK (2011) Heat shock protein 27 differentiates tolerogenic macrophages that may support human breast cancer progression. Cancer Res 71(2):318–327.  https://doi.org/10.1158/0008-5472.can-10-1778 PubMedCrossRefGoogle Scholar
  4. 4.
    Pashtan I, Tsutsumi S, Wang S, Xu W, Neckers L (2008) Targeting Hsp90 prevents escape of breast cancer cells from tyrosine kinase inhibition. Cell Cycle 7(18):2936–2941.  https://doi.org/10.4161/cc.7.18.6701 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kojima K, Duvvuri S, Ruvolo V, Samaniego F, Younes A, Andreeff M (2012) Decreased sensitivity of 17p-deleted chronic lymphocytic leukemia cells to a small molecule BCL-2 antagonist ABT-737. Cancer 118(4):1023–1031.  https://doi.org/10.1002/cncr.26360 PubMedCrossRefGoogle Scholar
  6. 6.
    Dote H, Burgan WE, Camphausen K, Tofilon PJ (2006) Inhibition of hsp90 compromises the DNA damage response to radiation. Cancer Res 66(18):9211–9220.  https://doi.org/10.1158/0008-5472.CAN-06-2181 PubMedCrossRefGoogle Scholar
  7. 7.
    Ellis RJ, van der Vies SM (1991) Molecular chaperones. Annu Rev Biochem 60(1):321–347.  https://doi.org/10.1146/annurev.bi.60.070191.001541 PubMedCrossRefGoogle Scholar
  8. 8.
    Welch WJ (1992) Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72(4):1063–1081.  https://doi.org/10.1152/physrev.1992.72.4.1063 PubMedCrossRefGoogle Scholar
  9. 9.
    Strauch A, Haslbeck M (2016) The function of small heat-shock proteins and their implication in proteostasis. Essays Biochem 60(2):163–172.  https://doi.org/10.1042/ebc20160010 PubMedCrossRefGoogle Scholar
  10. 10.
    Pandey MK, Prasad S, Tyagi AK, Deb L, Huang J, Karelia DN, Amin SG, Aggarwal BB (2016) Targeting cell survival proteins for cancer cell death. Pharmaceuticals (Basel, Switzerland) 9(1).  https://doi.org/10.3390/ph9010011
  11. 11.
    Chae YC, Caino MC, Lisanti S, Ghosh JC, Dohi T, Danial NN, Villanueva J, Ferrero S, Vaira V, Santambrogio L, Bosari S, Languino LR, Herlyn M, Altieri DC (2012) Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell 22(3):331–344.  https://doi.org/10.1016/j.ccr.2012.07.015 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zoubeidi A, Gleave M (2012) Small heat shock proteins in cancer therapy and prognosis. Int J Biochem Cell Biol 44(10):1646–1656.  https://doi.org/10.1016/j.biocel.2012.04.010 PubMedCrossRefGoogle Scholar
  13. 13.
    Xia Y, Rocchi P, Iovanna JL, Peng L (2012) Targeting heat shock response pathways to treat pancreatic cancer. Drug Discov Today 17(1–2):35–43.  https://doi.org/10.1016/j.drudis.2011.09.016 PubMedCrossRefGoogle Scholar
  14. 14.
    Cavanaugh A, Juengst B, Sheridan K, Danella JF, Williams H (2015) Combined inhibition of heat shock proteins 90 and 70 leads to simultaneous degradation of the oncogenic signaling proteins involved in muscle invasive bladder cancer. Oncotarget 6(37):39821–39838.  https://doi.org/10.18632/oncotarget.5496 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ono A, Kumai T, Koizumi H, Nishikawa H, Kobayashi S, Tadokoro M (2009) Overexpression of heat shock protein 27 in squamous cell carcinoma of the uterine cervix: a proteomic analysis using archival formalin-fixed, paraffin-embedded tissues. Hum Pathol 40(1):41–49.  https://doi.org/10.1016/j.humpath.2008.06.010 PubMedCrossRefGoogle Scholar
  16. 16.
    Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5(22):2592–2601.  https://doi.org/10.4161/cc.5.22.3448 PubMedCrossRefGoogle Scholar
  17. 17.
    Jego G, Hazoumé A, Seigneuric R, Garrido C (2013) Targeting heat shock proteins in cancer. Cancer Lett 332(2):275–285.  https://doi.org/10.1016/j.canlet.2010.10.014 PubMedCrossRefGoogle Scholar
  18. 18.
    Lo Muzio L, Leonardi R, Mariggio MA, Mignogna MD, Rubini C, Vinella A, Pannone G, Giannetti L, Serpico R, Testa NF, De Rosa G, Staibano S (2004) HSP 27 as possible prognostic factor in patients with oral squamous cell carcinoma. Histol Histopathol 19(1):119–128.  https://doi.org/10.14670/HH-19.119 PubMedGoogle Scholar
  19. 19.
    Joo M, Chi JG, Lee H (2005) Expressions of HSP70 and HSP27 in hepatocellular carcinoma. J Korean Med Sci 20(5):829–834.Google Scholar
  20. 20.
    Vargas-Roig LM, Gago FE, Tello O, Aznar JC, Ciocca DR (1998) Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 79(5):468–475.  https://doi.org/10.1002/(SICI)1097-0215(19981023)79:5<468::AID-IJC4>3.0.CO;2-Z PubMedCrossRefGoogle Scholar
  21. 21.
    Ciocca DR, Oesterreich S, Chamness GC, MCGuire WL, Fuqua SA (1993) Biological and clinical implications of heat shock protein 27000 (Hsp27): a review. J Natl Cancer Inst 85(19):1558–1570.  https://doi.org/10.1093/jnci/85.19.1558 PubMedCrossRefGoogle Scholar
  22. 22.
    Bauer K, Nitsche U, Slotta-Huspenina J, Drecoll E, von Weyhern CH, Rosenberg R, Hofler H, Langer R (2012) High HSP27 and HSP70 expression levels are independent adverse prognostic factors in primary resected colon cancer. Cell Oncol (Dordrecht) 35(3):197–205.  https://doi.org/10.1007/s13402-012-0079-3 CrossRefGoogle Scholar
  23. 23.
    Kong F, Wang H, Guo J, Peng M, Ji H, Yang H, Liu B, Wang J, Zhang X, Li S (2016) Hsp70 suppresses apoptosis of BRL cells by regulating the expression of Bcl-2, cytochrome C, and caspase 8/3. In Vitro Cell Dev Biol Anim 52(5):568–575.  https://doi.org/10.1007/s11626-016-0005-5 PubMedCrossRefGoogle Scholar
  24. 24.
    Concannon CG, Orrenius S, Samali A (2001) Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 9(4–5):195–201.  https://doi.org/10.3727/000000001783992605 PubMedCrossRefGoogle Scholar
  25. 25.
    Lauber K, Brix N, Ernst A, Hennel R, Krombach J, Anders H, Belka C (2015) Targeting the heat shock response in combination with radiotherapy: sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 368(2):209–229.  https://doi.org/10.1016/j.canlet.2015.02.047 PubMedCrossRefGoogle Scholar
  26. 26.
    Shevtsov M, Multhoff G (2016) Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 7:171.  https://doi.org/10.3389/fimmu.2016.00171 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Spiegelberg D, Dascalu A, Mortensen AC, Abramenkovs A, Kuku G, Nestor M, Stenerlow B (2015) The novel HSP90 inhibitor AT13387 potentiates radiation effects in squamous cell carcinoma and adenocarcinoma cells. Oncotarget 6(34):35652–35666.  https://doi.org/10.18632/oncotarget.5363 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Du XL, Jiang T, Wen ZQ, Gao R, Cui M, Wang F (2009) Silencing of heat shock protein 70 expression enhances radiotherapy efficacy and inhibits cell invasion in endometrial cancer cell line. Croat Med J 50(2):143–150.  https://doi.org/10.3325/cmj.2009.50.143 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Haubner F, Leyh M, Ohmann E, Pohl F, Prantl L, Gassner HG (2013) Effects of external radiation in a co-culture model of endothelial cells and adipose-derived stem cells. Radiat Oncol 8(1):1CrossRefGoogle Scholar
  30. 30.
    Haubner F, Muschter D, Pohl F, Schreml S, Prantl L, Gassner HG (2015) A co-culture model of fibroblasts and adipose tissue-derived stem cells reveals new insights into impaired wound healing after radiotherapy. Int J Mol Sci 16(11):25947–25958.  https://doi.org/10.3390/ijms161125935 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Haubner F, Ohmann E, Pohl F, Prantl L, Strutz J, Gassner H (2013) Effects of radiation on the expression of adhesion molecules and cytokines in a static model of human dermal microvascular endothelial cells. Clin Hemorheol Microcirc 54(4):371–379.  https://doi.org/10.3233/CH-2012-1626 PubMedGoogle Scholar
  32. 32.
    Gieringer M, Gosepath J, Naim R (2011) Radiotherapy and wound healing: principles, management and prospects (review). Oncol Rep 26(2):299–307.  https://doi.org/10.3892/or.2011.1319 PubMedGoogle Scholar
  33. 33.
    Pohl F, Hassel S, Nohe A, Flentje M, Knaus P, Sebald W, Koelbl O (2003) Radiation-induced suppression of the Bmp2 signal transduction pathway in the pluripotent mesenchymal cell line C2C12: an in vitro model for prevention of heterotopic ossification by radiotherapy. Radiat Res 159(3):345–350. Google Scholar
  34. 34.
    Haubner F, Ohmann E, Pohl F, Strutz J, Gassner HG (2012) Wound healing after radiation therapy: review of the literature. Radiat Oncol (London, England) 7(1):162.  https://doi.org/10.1186/1748-717x-7-162 CrossRefGoogle Scholar
  35. 35.
    Ramos P, Bentires-Alj M (2015) Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene 34(28):3617–3626.  https://doi.org/10.1038/onc.2014.314 PubMedCrossRefGoogle Scholar
  36. 36.
    Watanabe S, Watanabe R, Oton-Leite AF, Alencar Rde C, Oliveira JC, Leles CR, Batista AC, Mendonca EF (2010) Analysis of cell proliferation and pattern of invasion in oral squamous cell carcinoma. J Oral Sci 52(3):417–424.  https://doi.org/10.2334/josnusd.52.417 PubMedCrossRefGoogle Scholar
  37. 37.
    Huang S-M, Bock JM, Harari PM (1999) Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59(8):1935–1940PubMedGoogle Scholar
  38. 38.
    Aloy MT, Hadchity E, Bionda C, Diaz-Latoud C, Claude L, Rousson R, Arrigo AP, Rodriguez-Lafrasse C (2008) Protective role of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells. Int J Radiat Oncol Biol Phys 70(2):543–553.  https://doi.org/10.1016/j.ijrobp.2007.08.061 PubMedCrossRefGoogle Scholar
  39. 39.
    Haikonen J, Rantanen V, Pekkola K, Kulmala J, Grénman R (2003) Does skin fibroblast radiosensitivity predict squamous cancer cell radiosensitivity of the same individual? Int J Cancer 103(6):784–788.  https://doi.org/10.1002/ijc.10890 PubMedCrossRefGoogle Scholar
  40. 40.
    Lomax ME, Folkes LK, O'Neill P (2013) Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol) 25(10):578–585.  https://doi.org/10.1016/j.clon.2013.06.007 CrossRefGoogle Scholar
  41. 41.
    Chen M, Huang Q, Xu W, She C, Xie ZG, Mao YT, Dong QR, Ling M (2014) Low-dose X-ray irradiation promotes osteoblast proliferation, differentiation and fracture healing. PLoS One 9(8):e104016.  https://doi.org/10.1371/journal.pone.0104016 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gerashchenko BI, Ryabchenko NM, Glavin OA, Rodionova NK, Makovetska LI, Ganzha OB, Druzhyna MO, Mikhailenko VM (2013) Fractionated low-dose radiation exposure potentiates proliferation of implanted tumor cells. Exp Oncol 35(1):69–71PubMedGoogle Scholar
  43. 43.
    Wang GJ, Cai L (2000) Induction of cell-proliferation hormesis and cell-survival adaptive response in mouse hematopoietic cells by whole-body low-dose radiation. Toxicol Sci 53(2):369–376.  https://doi.org/10.1093/toxsci/53.2.369 PubMedCrossRefGoogle Scholar
  44. 44.
    Bauer R, Dowejko A, Driemel O, Bosserhoff AK, Reichert TE (2008) Truncated P-cadherin is produced in oral squamous cell carcinoma. FEBS J 275(16):4198–4210.  https://doi.org/10.1111/j.1742-4658.2008.06567.x PubMedCrossRefGoogle Scholar
  45. 45.
    Jiang H, Xu Y, Li W, Ma K, Cai L, Wang G (2008) Low-dose radiation does not induce proliferation in tumor cells in vitro and in vivo. Radiat Res 170(4):477–487.  https://doi.org/10.1667/RR1132.1 PubMedCrossRefGoogle Scholar
  46. 46.
    Shibuya H, Takagi M, Kitagawa M, Shioiri S (1992) Squamous cell carcinoma of the oral cavity after irradiation for nonmalignant lesions: report of four cases. J Oral Maxillofac Surg 50(1):66–71.  https://doi.org/10.1016/0278-2391(92)90200-J PubMedCrossRefGoogle Scholar
  47. 47.
    Kundrat P, Friedland W (2015) Impact of intercellular induction of apoptosis on low-dose radiation carcinogenesis. Radiat Prot Dosim 166(1–4):170–173.  https://doi.org/10.1093/rpd/ncv169 CrossRefGoogle Scholar
  48. 48.
    Komarova EY, Afanasyeva EA, Bulatova MM, Cheetham ME, Margulis BA, Guzhova IV (2004) Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone hsp70. Cell Stress Chaperones 9(3):265–275.  https://doi.org/10.1379/CSC-27R1.1 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J (1997) Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110(Pt 3):357–368PubMedGoogle Scholar
  50. 50.
    Hirano S, Rees RS, Gilmont RR (2002) MAP kinase pathways involving hsp27 regulate fibroblast-mediated wound contraction. J Surg Res 102(2):77–84.  https://doi.org/10.1006/jsre.2001.6315 PubMedCrossRefGoogle Scholar
  51. 51.
    Golembieski WA, Thomas SL, Schultz CR, Yunker CK, McClung HM, Lemke N, Cazacu S, Barker T, Sage EH, Brodie C, Rempel SA (2008) HSP27 mediates SPARC-induced changes in glioma morphology, migration, and invasion. Glia 56(10):1061–1075.  https://doi.org/10.1002/glia.20679 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OtorhinolaryngologyUniversity Medical Center RegensburgRegensburgGermany
  2. 2.Department of Orthopedic Surgery, Division of Experimental OrthopedicsUniversity Medical Center RegensburgRegensburgGermany
  3. 3.Department of Oral and Maxillofacial SurgeryUniversity Medical Center RegensburgRegensburgGermany
  4. 4.Department of DermatologyUniversity Medical Center RegensburgRegensburgGermany
  5. 5.Department of Otorhinolaryngology, Head and Neck SurgeryLudwig-Maximilians UniversityMunichGermany

Personalised recommendations