Advertisement

Clinical Oral Investigations

, Volume 22, Issue 6, pp 2209–2218 | Cite as

Effect of nanostructured zirconium dioxide incorporation in an experimental adhesive resin

  • Camila Provenzi
  • Fabrício Mezzomo Collares
  • Marla Cuppini
  • Susana Maria Werner Samuel
  • Annelise Kopp Alves
  • Carlos Pérez Bergmann
  • Vicente Castelo Branco Leitune
Original Article
  • 161 Downloads

Abstract

Objectives

The aim of this study was to evaluate the influence of nanostructured zirconium dioxide incorporation in an experimental adhesive resin.

Methods

ZrO2 particles were characterized by X-ray diffraction (XRD), micro-Raman spectroscopy and Brunauer–Emmett–Teller (B.E.T). Experimental adhesive resins were formulated with 0, 0.5, 1, 4.8, and 9.1% ZrO2 in weight. The adhesives were evaluated based on degree of conversion (DC), radiopacity, softening in solvent and microtensile bond strength (μTBS) 24 h and after 1 year of aging. Mineral deposition at the hybrid layer was assessed with micro-Raman spectroscopy at the baseline and after 14 days.

Results

XRD showed monoclinic and tetragonal phases of ZrO2.particles. B.E.T data revealed a surface area of 37.41 m2/g, and typical chemical groups were shown on the Raman spectra. The addition of ZrO2 did not influence the radiopacity. The addition of 4.8% and 9.1 wt.% ZrO2 showed higher initial hardness with increased softening in solvent (P < 0.05) and promoted mineral deposition at the dentin interface. DC was significantly increased in the group with 1% ZrO2 (P < 0.05). The μTBS test showed difference on the group with 9.1 wt.% of ZrO2, with a significant reduction after aging.

Conclusion

The incorporation of ZrO2 promoted mineral deposition on the adhesive interface and the addition of 1 wt.% caused a significant increase on the DC without compromising the other physicochemical characteristics, which may prove promising for the development of new dental adhesive systems.

Clinical relevance

The mineral deposition on the hybrid layer can result in a longer stability of the adhesive, thus delaying the hydrolytic degradation.

Keywords

Nanostructures Zirconium dioxide Dentin bonding agents 

Notes

Acknowledgements

The authors gratefully acknowledge CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the scholarship.

Funding

The work was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, van Meerbeek B (2005) A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res 84(2):118–132.  https://doi.org/10.1177/154405910508400204 PubMedCrossRefGoogle Scholar
  2. 2.
    Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, Coutinho E, Suzuki K, Lambrechts P, Van Meerbeek B (2007) Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28(26):3757–3785.  https://doi.org/10.1016/j.biomaterials.2007.04.044 PubMedCrossRefGoogle Scholar
  3. 3.
    Collares FM, Ogliari FA, Zanchi CH, Petzhold CL, Piva E, Samuel SM (2011) Influence of 2-hydroxyethyl methacrylate concentration on polymer network of adhesive resin. J Adhes Dent 13(2):125–129.  https://doi.org/10.3290/j.jad.a18781 PubMedGoogle Scholar
  4. 4.
    Leitune VC, Collares FM, Trommer RM, Andrioli DG, Bergmann CP, Samuel SMW (2013) Niobium pentoxide as a novel filler for dental adhesive resin. J Dent 41(2):106–113.  https://doi.org/10.1016/j.jdent.2012.04.022 PubMedCrossRefGoogle Scholar
  5. 5.
    Sano H, Takatsu T, Ciucchi B, Horner JA, Matthews WG, Pashley DH (1995) Nanoleakage: leakage within the hybrid layer. Oper Dent 20(1):18–25PubMedGoogle Scholar
  6. 6.
    Sano H, Yoshiyama M, Ebisu S, Burrow MF, Takatsu T, Ciucchi B, Carvalho R, Pashley DH (1995) Comparative SEM and TEM observations of nanoleakage within the hybrid layer. Oper Dent 20(4):160–167PubMedGoogle Scholar
  7. 7.
    Zhang SC, Kern M (2009) The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives. Int J Oral Sci 1(4):163–176.  https://doi.org/10.4248/IJOS.09044 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    De Munck J, Mine A, Van den Steen PE, Van Landuyt KL, Poitevin A, Opdenakker G, Van Meerbeek B (2010) Enzymatic degradation of adhesive-dentin interfaces produced by mild self-etch adhesives. Eur J Oral Sci 118(5):494–501.  https://doi.org/10.1111/j.1600-0722.2010.00758.x PubMedCrossRefGoogle Scholar
  9. 9.
    Nikaido T, Nurrohman H, Takagaki T, Sadr A, Ichinose S, Tagami J (2015) Nanoleakage in hybrid layer and acid–base resistant zone at the adhesive/dentin interface. Microsc Microanal 21(05):1271–1277.  https://doi.org/10.1017/S1431927615015068 PubMedCrossRefGoogle Scholar
  10. 10.
    Kondo Y, Takagaki T, Okuda M, Ikeda M, Kadoma Y, Yamauchi J, Okada K, Sadr A, Nikaido T, Tagami J (2010) Effect of PMMA filler particles addition on the physical properties of resin composite. Dent Mater J 29(5):596–601.  https://doi.org/10.4012/dmj.2009-141 PubMedCrossRefGoogle Scholar
  11. 11.
    Fujita K, Ikemi T, Nishiyama N (2011) Effects of particle size of silica filler on polymerization conversion in a light-curing resin composite. Dent Mater 27(11):1079–1085.  https://doi.org/10.1016/j.dental.2011.07.010 PubMedCrossRefGoogle Scholar
  12. 12.
    Skovgaard M, Ahniyaz A, Sørensen BF, Almdal K, van Lelieveld A (2010) Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders. J Eur Ceram Soc 30(13):2749–2755.  https://doi.org/10.1016/j.jeurceramsoc.2010.05.025 CrossRefGoogle Scholar
  13. 13.
    Coldea A, Swain MV, Thiel N (2013) Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater 29(4):419–426.  https://doi.org/10.1016/j.dental.2013.01.002 PubMedCrossRefGoogle Scholar
  14. 14.
    Leitune VCB, Collares FM, Trommer RM, Andrioli DG, Bergmann CP, Samuel SMW (2013) The addition of nanostructured hydroxyapatite to an experimental adhesive resin. J Dent 41(4):321–327.  https://doi.org/10.1016/j.jdent.2013.01.001 PubMedCrossRefGoogle Scholar
  15. 15.
    Schulz H, Schimmoeller B, Pratsinis SE, Salz U, Bock T (2008) Radiopaque dental adhesives: dispersion of flame-made Ta2O5/SiO2 nanoparticles in methacrylic matrices. J Dent 36(8):579–587.  https://doi.org/10.1016/j.jdent.2008.04.010 PubMedCrossRefGoogle Scholar
  16. 16.
    Sun J, Petersen EJ, Watson SS, Sims CM, Kassman A, Frukhtbeyn S, Skrtic D, Ok MT, Jacobs DL, Reipa V, Ye Q, Nelson BC (2017) Biophysical characterization of functionalized titania nanoparticles and their application in dental adhesives. Acta Biomater 53:585–597.  https://doi.org/10.1016/j.actbio.2017.01.084 PubMedCrossRefGoogle Scholar
  17. 17.
    Ragosta GAM, Musto P (2005) Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46(23):10506–10516.  https://doi.org/10.1016/j.polymer.2005.08.028 CrossRefGoogle Scholar
  18. 18.
    Garcia IM, Leitune VC, Kist TL, Takimi A, Samuel SM, Collares FM (2016) Quantum dots as nonagglomerated nanofillers for adhesive resins. J Dent Res 95(12):1401–1407.  https://doi.org/10.1177/0022034516656838 PubMedCrossRefGoogle Scholar
  19. 19.
    Ferracane JL (2006) Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 22(3):211–222.  https://doi.org/10.1016/j.dental.2005.05.005 PubMedCrossRefGoogle Scholar
  20. 20.
    Manicone PF, Rossi Iommetti P, Raffaelli L (2007) An overview of zirconia ceramics: basic properties and clinical applications. J Dent 35(11):819–826.  https://doi.org/10.1016/j.jdent.2007.07.008 PubMedCrossRefGoogle Scholar
  21. 21.
    Sarkar D, Swain SK, Adhikari S, Reddy BS, Maiti HS (2013) Synthesis, mechanical properties and bioactivity of nanostructured zirconia. Mater Sci Eng C Mater Biol Appl 33(6):3413–3417.  https://doi.org/10.1016/j.msec.2013.04.036 PubMedCrossRefGoogle Scholar
  22. 22.
    Denry I, Kelly JR (2008) State of the art of zirconia for dental applications. Dent Mater 24(3):299–307.  https://doi.org/10.1016/j.dental.2007.05.007 PubMedCrossRefGoogle Scholar
  23. 23.
    Höland WSM, Watzke R, Peschke A, Kappert H (2008) Ceramics as biomaterials for dental restoration. Expert Rev Med Devices 5(6):729–745.  https://doi.org/10.1586/17434440.5.6.729 PubMedCrossRefGoogle Scholar
  24. 24.
    Karunakaran CSS (2005) Photocatalysis with ZrO2: oxidation of aniline. J Mol Catal A Chem 233(1-2):4–8.  https://doi.org/10.1016/j.molcata.2005.01.038 CrossRefGoogle Scholar
  25. 25.
    Mishra T, Hait J, Aman N, Jana RK, Chakravarty S (2007) Effect of UV and visible light on photocatalytic reduction of lead and cadmium over titania based binary oxide materials. J Colloid Interface Sci 316(1):80–84.  https://doi.org/10.1016/j.jcis.2007.08.037 PubMedCrossRefGoogle Scholar
  26. 26.
    Lohbauer U, Wagner A, Belli R, Stoetzel C, Hilpert A, Kurland HD, Grabow J, Muller FA (2010) Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives. Acta Biomater 6(12):4539–4546.  https://doi.org/10.1016/j.actbio.2010.07.002 PubMedCrossRefGoogle Scholar
  27. 27.
    Skovgaard M, Almdal K, Sørensen BF, Linderoth S, van Lelieveld A (2011) Shrinkage reduction of dental composites by addition of expandable zirconia filler. J Compos Mater 46(26):5–2822.  https://doi.org/10.1177/0021998311401936 Google Scholar
  28. 28.
    Deville S, Chevalier J, Gremillard L (2006) Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials 27(10):2186–2192.  https://doi.org/10.1016/j.biomaterials.2005.11.021 PubMedCrossRefGoogle Scholar
  29. 29.
    Allaker RPRG (2008) Potential impact of nanotechnologyon the control of infectious diseases. Trans R Soc Trop Med Hyg 102(1):1–2.  https://doi.org/10.1016/j.trstmh.2007.07.003 PubMedCrossRefGoogle Scholar
  30. 30.
    Martins GC, Meier MM, Loguercio AD, Cecchin F, Gomes OMM, Reis A (2013) Effects of zirconia nanoparticles addition to experimental adhesives on radiopacity and microhardness. Braz J Oral Sci 12(4):319–322.  https://doi.org/10.1590/S1677-32252013000400008 CrossRefGoogle Scholar
  31. 31.
    Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6(6):651–663.  https://doi.org/10.2174/156652406778195026 PubMedCrossRefGoogle Scholar
  32. 32.
    Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028.  https://doi.org/10.1021/la104825u PubMedCrossRefGoogle Scholar
  33. 33.
    Collares FM, Portella FF, Leitune VC, Samuel SM (2014) Discrepancies in degree of conversion measurements by FTIR. Braz Oral Res 28(6):9–15.  https://doi.org/10.1590/S1806-83242013000600002 PubMedGoogle Scholar
  34. 34.
    Miyazaki M, Sato H, Onose H, Moore BK, Platt JA (2003) Analysis of the enamel/adhesive resin interface with laser Raman microscopy. Oper Dent 28(2):136–142PubMedGoogle Scholar
  35. 35.
    Miciukiewicz J, Mang T, Knözinger H (1995) Raman spectroscopy characterization of molybdena supported on titania-zirconia mixed oxide. Appl Catal A Gen 122(2):151–159.  https://doi.org/10.1016/0926-860X(94)00236-3 CrossRefGoogle Scholar
  36. 36.
    Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915.  https://doi.org/10.1016/j.biomaterials.2006.01.017 PubMedCrossRefGoogle Scholar
  37. 37.
    Collares FM, Ogliari FA, Lima GS, Fontanella VR, Piva E, Samuel SM (2010) Ytterbium trifluoride as a radiopaque agent for dental cements. Int Endod J 43(9):792–797.  https://doi.org/10.1111/j.1365-2591.2010.01746.x PubMedCrossRefGoogle Scholar
  38. 38.
    de Moraes Porto IC, Honorio NC, Amorim DA, de Melo Franco AV, Penteado LA, Parolia A (2014) Comparative radiopacity of six current adhesive systems. J Conserv Dent 17(1):65–69.  https://doi.org/10.4103/0972-0707.124151 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bowen RL, Cleek GW (1972) A new series of x-ray-opaque reinforcing fillers for composite materials. J Dent Res 51(1):177–182.  https://doi.org/10.1177/00220345720510011301 PubMedCrossRefGoogle Scholar
  40. 40.
    Reges RVCF, Adabo GL, Cruz CAS, Sobrinho LC (2002) Análise quantitativa do conteúdo de carga inorgânica das resinas compostas/Quantitative analysis of the content of load inorganic of the composite resin. Braz Dent Sci 5(2):18–22.  https://doi.org/10.14295/bds.2002.v5i2.153 Google Scholar
  41. 41.
    Neftali C, Thiago O, Evandro P, Fernanda L, Giana L, Marcelo M, Cristiane R, Fabrício O (2012) YbF3/SiO2 fillers as radiopacifiers in a dental adhesive resin. Nano-Micro Lett 4:189–196.  https://doi.org/10.3786/nml.v4i3.p189-196 CrossRefGoogle Scholar
  42. 42.
    Ferracane JL (1985) Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater 1(1):11–14.  https://doi.org/10.1016/s0109-5641(85)80058-0 PubMedCrossRefGoogle Scholar
  43. 43.
    Stansbury JW, Dickens SH (2001) Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent Mater 17(1):71–79.  https://doi.org/10.1016/S0109-5641(00)00062-2 PubMedCrossRefGoogle Scholar
  44. 44.
    Belli R, Kreppel S, Petschelt A, Hornberger H, Boccaccini AR, Lohbauer U (2014) Strengthening of dental adhesives via particle reinforcement. J Mech Behav Biomed Mater 37:100–108.  https://doi.org/10.1016/j.jmbbm.2014.05.007 PubMedCrossRefGoogle Scholar
  45. 45.
    Luo K, Zhou S, Wu L (2009) High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles. Thin Solid Films 517(21):5974–5980.  https://doi.org/10.1016/j.tsf.2009.03.162 CrossRefGoogle Scholar
  46. 46.
    Nakayama N, Hayashi T (2007) Preparation and characterization of TiO2–ZrO2 and thiol-acrylate resin nanocomposites with high refractive index via UV-induced crosslinking polymerization. Compos A: Appl Sci Manuf 38(9):1996–2004.  https://doi.org/10.1016/j.compositesa.2007.05.005 CrossRefGoogle Scholar
  47. 47.
    Lung CY, Matinlinna JP (2012) Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater 28(5):467–477.  https://doi.org/10.1016/j.dental.2012.02.009 PubMedCrossRefGoogle Scholar
  48. 48.
    Xu HH, Weir MD, Sun L (2007) Nanocomposites with Ca and PO4 release: effects of reinforcement, dicalcium phosphate particle size and silanization. Dent Mater 23(12):1482–1491.  https://doi.org/10.1016/j.dental.2007.01.002 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Soderholm KJ, Yang MC, Garcea I (2000) Filler particle leachability of experimental dental composites. Eur J Oral Sci 108(6):555–560.  https://doi.org/10.1034/j.1600-0722.2000.00919.x PubMedCrossRefGoogle Scholar
  50. 50.
    Krumova M, Klingshirn C, Haupert F, Friedrich K (2001) Microhardness studies on functionally graded polymer composites. Compos Sci Technol 61(4):557–563.  https://doi.org/10.1016/S0266-3538(00)00228-1 CrossRefGoogle Scholar
  51. 51.
    Uchida M, Kim H-M, Kokubo T, Miyaji F, Nakamura T (2001) Bonelike apatite formation induced on zirconia gel in a simulated body fluid and its modified solutions. J Am Ceram Soc 84(9):2041–2044.  https://doi.org/10.1111/j.1151-2916.2001.tb00955.x CrossRefGoogle Scholar
  52. 52.
    Osorio R, Osorio E, Medina-Castillo AL, Toledano M (2014) Polymer nanocarriers for dentin adhesion. J Dent Res 93(12):1258–1263.  https://doi.org/10.1177/0022034514551608 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Portella FF, Collares FM, Dos Santos LA, dos Santos BP, Camassola M, Leitune VC, Samuel SM (2015) Glycerol salicylate-based containing alpha-tricalcium phosphate as a bioactive root canal sealer. J Biomed Mater Res B Appl Biomater 103(8):1663–1669.  https://doi.org/10.1002/jbm.b.33326 PubMedCrossRefGoogle Scholar
  54. 54.
    Toledano M, Aguilera FS, Cabello I, Osorio R (2014) Remineralization of mechanical loaded resin-dentin interface: a transitional and synchronized multistep process. Biomech Model Mechanobiol 13(6):1289–1302.  https://doi.org/10.1007/s10237-014-0573-9 PubMedCrossRefGoogle Scholar
  55. 55.
    Sauro S, Osorio R, Watson TF, Toledano M (2015) Influence of phosphoproteins' biomimetic analogs on remineralization of mineral-depleted resin-dentin interfaces created with ion-releasing resin-based systems. Dent Mater 31(7):759–777.  https://doi.org/10.1016/j.dental.2015.03.013 PubMedCrossRefGoogle Scholar
  56. 56.
    Kim J, Arola DD, Gu L, Kim YK, Mai S, Liu Y, Pashley DH, Tay FR (2010) Functional biomimetic analogs help remineralize apatite-depleted demineralized resin-infiltrated dentin via a bottom-up approach. Acta Biomater 6(7):2740–2750.  https://doi.org/10.1016/j.actbio.2009.12.052 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Dai L, Liu Y, Salameh Z, Khan S, Mao J, Pashley DH, Tay FR (2011) Can caries-affected dentin be completely remineralized by guided tissue remineralization? Dent Hypotheses 2(2):74–82.  https://doi.org/10.5436/j.dehy.2010.1.00011 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Burwell AK, Thula-Mata T, Gower LB, Habelitz S, Kurylo M, Ho SP, Chien YC, Cheng J, Cheng NF, Gansky SA, Marshall SJ, Marshall GW (2012) Functional remineralization of dentin lesions using polymer-induced liquid-precursor process. PLoS One 7(6):e38852.  https://doi.org/10.1371/journal.pone.0038852 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Nagaoka N, Yoshihara K, Feitosa VP, Tamada Y, Irie M, Yoshida Y, van Meerbeek B, Hayakawa S (2017) Chemical interaction mechanism of 10-MDP with zirconia. Sci Rep 7:45563–45569.  https://doi.org/10.1038/srep45563 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kelly PM, Francis Rose LR (2002) The martensitic transformation in ceramics — its role in transformation toughening. Prog Mater Sci 47(5):463–557.  https://doi.org/10.1016/S0079-6425(00)00005-0 CrossRefGoogle Scholar
  61. 61.
    Garvie RC, Hannink RH, Pascoe RT (1975) Ceramic steel? Nature 258(5537):703–704.  https://doi.org/10.1038/258703a0 CrossRefGoogle Scholar
  62. 62.
    Heuer AH, Lange FF, Swain MV, Evans AG (1986) Transformation toughening: an overview. J Am Ceram Soc 69(i-iv):i–iv.  https://doi.org/10.1111/j.1151-2916.1986.tb07400.x CrossRefGoogle Scholar
  63. 63.
    Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24(3):289–298.  https://doi.org/10.1016/j.dental.2007.05.005 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Camila Provenzi
    • 1
  • Fabrício Mezzomo Collares
    • 1
  • Marla Cuppini
    • 1
  • Susana Maria Werner Samuel
    • 1
  • Annelise Kopp Alves
    • 2
  • Carlos Pérez Bergmann
    • 2
  • Vicente Castelo Branco Leitune
    • 1
  1. 1.Dental Materials Laboratory, School of DentistryUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Laboratory of Ceramic MaterialsUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations