Clinical Oral Investigations

, Volume 22, Issue 6, pp 2141–2147 | Cite as

Influence of the oscillation frequency of different side-to-side toothbrushes on noncontact biofilm removal

  • Julia C. Schmidt
  • Monika Astasov-Frauenhoffer
  • Tuomas Waltimo
  • Roland Weiger
  • Clemens Walter
Original Article

Abstract

Objectives

The objective of this study was to investigate the influence of different oscillation frequencies of three powered toothbrushes with side-to-side action for noncontact biofilm removal in an artificial interdental space model.

Materials and methods

A three-species biofilm (Porphyromonas gingivalis, Fusobacterium nucleatum and Streptococcus sanguinis) was formed in vitro on protein-coated titanium disks using a flow chamber system combined with a static biofilm growth model. The oscillation frequencies of three commercial side-to-side toothbrushes were evaluated by means of a dose response. The frequency was decreased in steps (100, 85, 70, 55, and 40%). Subsequently, the biofilm-coated substrates were exposed to the side-to-side toothbrushes. The biofilm volumes were measured using volumetric analyses (Imaris 8.1.2) with confocal laser scanning microscope images (Zeiss LSM700).

Results

Compared to maximum oscillation frequency (100%), lower oscillation frequencies (up to 40%) resulted in reduced median percentages of biofilm reduction (median biofilm reduction up to 53% for maximum oscillation frequency, and up to 13% for 40% oscillation frequency) (p ≥ 0.03). In addition, decreasing the oscillation frequencies of the side-to-side toothbrushes showed an enhanced variety in the results of repeated experiments.

Conclusions

The oscillation frequency of the tested side-to-side toothbrushes affected the biofilm reduction in an interdental space model.

Clinical relevance

Within a toothbrush, higher oscillation frequencies may lead to beneficial effects on interdental biofilm removal by noncontact brushing.

Keywords

Side-to-side toothbrush Oscillation frequency Biofilm Hydrodynamic effect Oral hygiene Preventive dentistry 

Notes

Acknowledgements

We thank Krystyna Lenkeit (Clinic of Periodontology, Cariology and Endodontology, University of Basel) and Elisabeth Filipuzzi-Jenny (Clinic of Preventive Dentistry and Oral Microbiology, University of Basel) for laboratory assistance; Dr. Oliver Biehlmaier (Image Core Facility, Biozentrum, University of Basel) for assistance with microscopic analyses; and Ing. EurEta Sascha Martin (Department of Physics, University of Basel) for the construction of the toothbrush apparatus.

Funding

The titanium disks were provided by Straumann AG (Basel, Switzerland).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Research Ethics Committee of the University of Basel, Switzerland (EK:295/08).

Informed consent

Informed consent was obtained from saliva providers.

Supplementary material

784_2017_2305_Fig3_ESM.gif (587 kb)
ESM 1

(GIF 586 kb)

784_2017_2305_MOESM1_ESM.tiff (28.4 mb)
High-resolution image (TIFF 29104 kb)

References

  1. 1.
    Knöfler G, Friedl K, Fresmann S, Mausberg RF, Haak R, Ziebolz D (2017) Oral health behaviour and oral hygiene of dental professionals and laypersons—a survey performed in Lower Saxony, Germany. Oral Health Prev Dent 27:347–355Google Scholar
  2. 2.
    Schmidt JC, Zaugg C, Weiger R, Walter C (2013) Brushing without brushing?—a review of the efficacy of powered toothbrushes in noncontact biofilm removal. Clin Oral Investig 17(3):687–709.  https://doi.org/10.1007/s00784-012-0836-8 PubMedCrossRefGoogle Scholar
  3. 3.
    Schmidt JC, Astasov-Frauenhoffer M, Hauser-Gerspach I, Schmidt JP, Waltimo T, Weiger R, Walter C (2014) Efficacy of various side-to-side toothbrushes for noncontact biofilm removal. Clin Oral Investig 18(3):793–800.  https://doi.org/10.1007/s00784-013-1047-7 PubMedCrossRefGoogle Scholar
  4. 4.
    Schmidt JC, Astasov-Frauenhoffer M, Waltimo T, Weiger R, Walter C (2017) Efficacy of various side-to-side toothbrushes and impact of brushing parameters on noncontact biofilm removal in an interdental space model. Clin Oral Investig 21(5):1565–1577.  https://doi.org/10.1007/s00784-016-1969-y PubMedCrossRefGoogle Scholar
  5. 5.
    Adams H, Winston MT, Heersink J, Buckingham-Meyer KA, Costerton JW, Stoodley P (2002) Development of a laboratory model to assess the removal of biofilm from interproximal spaces by powered tooth brushing. Am J Dent 15 Spec No:12B–17BGoogle Scholar
  6. 6.
    Sharma PK, Gibcus MJ, van der Mei HC, Busscher HJ (2005) Influence of fluid shear and microbubbles on bacterial detachment from a surface. Appl Environ Microbiol 71(7):3668–3673.  https://doi.org/10.1128/AEM.71.7.3668-3673.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Busscher HJ, Jager D, Finger G, Schaefer N, van der Mei HC (2010) Energy transfer, volumetric expansion, and removal of oral biofilms by non-contact brushing. Eur J Oral Sci 118(2):177–182.  https://doi.org/10.1111/j.1600-0722.2010.00723.x PubMedCrossRefGoogle Scholar
  8. 8.
    Astasov-Frauenhoffer M, Braissant O, Hauser-Gerspach I, Weiger R, Walter C, Zitzmann NU, Waltimo T (2014) Microcalorimetric determination of the effects of amoxicillin, metronidazole, and their combination on in vitro biofilm. J Periodontol 85(2):349–357.  https://doi.org/10.1902/jop.2013.120733 PubMedCrossRefGoogle Scholar
  9. 9.
    Astasov-Frauenhoffer M, Braissant O, Hauser-Gerspach I, Daniels AU, Weiger R, Waltimo T (2012) Isothermal microcalorimetry provides new insights into biofilm variability and dynamics. FEMS Microbiol Lett 337(1):31–37.  https://doi.org/10.1111/1574-6968.12007 PubMedCrossRefGoogle Scholar
  10. 10.
    Weiger R, Decker EM, Krastl G, Brecx M (1999) Deposition and retention of vital and dead Streptococcus sanguinis cells on glass surfaces in a flow-chamber system. Arch Oral Biol 44(8):621–628.  https://doi.org/10.1016/S0003-9969(99)00061-8 PubMedCrossRefGoogle Scholar
  11. 11.
    Decker EM, Maier G, Axmann D, Brecx M, Von Ohle C (2008) Effect of xylitol/chlorhexidine versus xylitol or chlorhexidine as single rinses on initial biofilm formation of cariogenic streptococci. Quintessence Int 39(1):17–22PubMedGoogle Scholar
  12. 12.
    Decker EM, Weiger R, von Ohle C, Wiech I, Brecx M (2003) Susceptibility of planktonic versus attached Streptococcus sanguinis cells to chlorhexidine. Clin Oral Investig 7(2):98–102.  https://doi.org/10.1007/s00784-003-0202-y PubMedCrossRefGoogle Scholar
  13. 13.
    Decker EM, Weiger R, Wiech I, Heide PE, Brecx M (2003) Comparison of antiadhesive and antibacterial effects of antiseptics on Streptococcus sanguinis. Eur J Oral Sci 111(2):144–148.  https://doi.org/10.1034/j.1600-0722.2003.00025.x PubMedCrossRefGoogle Scholar
  14. 14.
    Hauser-Gerspach I, Kulik EM, Weiger R, Decker EM, Von Ohle C, Meyer J (2007) Adhesion of Streptococcus sanguinis to dental implant and restorative materials in vitro. Dent Mater J 26(3):361–366.  https://doi.org/10.4012/dmj.26.361 PubMedCrossRefGoogle Scholar
  15. 15.
    Tawakoli PN, Sauer B, Becker K, Buchalla W, Attin T (2015) Interproximal biofilm removal by intervallic use of a sonic toothbrush compared to an oral irrigation system. BMC Oral Health 15(1):91.  https://doi.org/10.1186/s12903-015-0079-6 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Egelberg J (1966) Permeability of the dento-gingival blood vessels. II. Clinically healthy gingivae. J Periodontal Res 1(4):276–286.  https://doi.org/10.1111/j.1600-0765.1966.tb01872.x PubMedCrossRefGoogle Scholar
  17. 17.
    Egelberg J (1966) Permeability of the dento-gingival blood vessels. I. Application of the vascular labelling method and gingival fluid measurements. J Periodontal Res 1(3):180–191.  https://doi.org/10.1111/j.1600-0765.1966.tb01858.x PubMedCrossRefGoogle Scholar
  18. 18.
    Hope CK, Petrie A, Wilson M (2003) In vitro assessment of the plaque-removing ability of hydrodynamic shear forces produced beyond the bristles by 2 electric toothbrushes. J Periodontol 74(7):1017–1022.  https://doi.org/10.1902/jop.2003.74.7.1017 PubMedCrossRefGoogle Scholar
  19. 19.
    Parini MR, Eggett DL, Pitt WG (2005) Removal of Streptococcus mutans biofilm by bubbles. J Clin Periodontol 32(11):1151–1156.  https://doi.org/10.1111/j.1600-051X.2005.00836.x PubMedCrossRefGoogle Scholar
  20. 20.
    Parini MR, Pitt WG (2005) Removal of oral biofilms by bubbles: the effect of bubble impingement angle and sonic waves. J Am Dent Assoc 136(12):1688–1693.  https://doi.org/10.14219/jada.archive.2005.0112 PubMedCrossRefGoogle Scholar
  21. 21.
    Parini MR, Pitt WG (2006) Dynamic removal of oral biofilms by bubbles. Colloids Surf B Biointerfaces 52(1):39–46.  https://doi.org/10.1016/j.colsurfb.2006.06.005 PubMedCrossRefGoogle Scholar
  22. 22.
    Pitt WG (2005) Removal of oral biofilm by sonic phenomena. Am J Dent 18(5):345–352PubMedGoogle Scholar
  23. 23.
    Kolenbrander PE, Palmer RJ, Jr., Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI (2006) Bacterial interactions and successions during plaque development. Periodontol 42:47–79, 1, DOI:  https://doi.org/10.1111/j.1600-0757.2006.00187.x
  24. 24.
    Nyvad B, Kilian M (1987) Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95(5):369–380PubMedGoogle Scholar
  25. 25.
    Walter C, Zahlten J, Schmeck B, Schaudinn C, Hippenstiel S, Frisch E, Hocke AC, Pischon N, Kuramitsu HK, Bernimoulin JP, Suttorp N, Krüll M (2004) Porphyromonas gingivalis strain-dependent activation of human endothelial cells. Infect Immun 72(10):5910–5918.  https://doi.org/10.1128/IAI.72.10.5910-5918.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Walter C, Purucker P, Bernimoulin JP, Suttorp N, Meyer J, Weiger R (2005) Critical assessment of microbiological diagnostics in periodontal diseases with special focus on Porphyromonas gingivalis. Swiss Dent J 115:415–424Google Scholar
  27. 27.
    Zahlten J, Riep B, Nichols FC, Walter C, Schmeck B, Bernimoulin JP, Hippenstiel S (2007) Porphyromonas gingivalis dihydroceramides induce apoptosis in endothelial cells. J Dent Res 86(7):635–640.  https://doi.org/10.1177/154405910708600710 PubMedCrossRefGoogle Scholar
  28. 28.
    Walter C, Jawor P, Bernimoulin JP, Hägewald S (2006) Moderate effect of enamel matrix derivative (Emdogain Gel) on Porphyromonas gingivalis growth in vitro. Arch Oral Biol 51(3):171–176.  https://doi.org/10.1016/j.archoralbio.2005.07.005 PubMedCrossRefGoogle Scholar
  29. 29.
    Jakubovics NS, Kolenbrander PE (2010) The road to ruin: the formation of disease-associated oral biofilms. Oral Dis 16(8):729–739.  https://doi.org/10.1111/j.1601-0825.2010.01701.x PubMedCrossRefGoogle Scholar
  30. 30.
    Zijnge V, van Leeuwen MB, Degener JE, Abbas F, Thurnheer T, Gmür R, Harmsen HJ (2010) Oral biofilm architecture on natural teeth. PLoS One 5(2):e9321.  https://doi.org/10.1371/journal.pone.0009321 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lea SC, Khan A, Patanwala HS, Landini G, Walmsley AD (2007) The effects of load and toothpaste on powered toothbrush vibrations. J Dent 35(4):350–354.  https://doi.org/10.1016/j.jdent.2006.11.006 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Periodontology, Endodontology and CariologyUniversity Center for Dental Medicine, University of BaselBaselSwitzerland
  2. 2.Clinic of Preventive Dentistry and Oral MicrobiologyUniversity Center for Dental Medicine, University of BaselBaselSwitzerland

Personalised recommendations