Skip to main content
Log in

Shotgun proteomics analysis of proliferating STRO-1-positive human dental pulp cell after exposure to nacreous water-soluble matrix

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Introduction

For dental treatment, dentin regeneration is required after a tooth injury with dental pulp exposure. The effects of the water-soluble matrix (WSM) extracted from the nacreous layer of the bivalve Pinctada maxima on human dental pulp cells in vitro were challenging and useful for clinical application.

Material and methods

The biological activity of the STRO-1-positive human dental pulp cells in response to WSM compared to Dulbecco’s modified Eagle medium (DMEM) as a normal control was monitored. The cell survival rate was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Proteomic profiles among inducers and noninducers with time dependency were compared by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis combined with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS).

Results

The human dental pulp cells cultured in nacreous WSM exhibited higher relative cell viability than those in DMEM with similar morphological appearance. Significant changes were found in the relative abundance of 44 proteins in cells after exposure to WSM for 2 weeks. They play a role in cell adhesion, cell proliferation, metabolic process, signal transduction, stress response, transcription, translation, and transport.

Conclusion

These results indicate that WSM of P. maxima has the ability to induce proliferation of human dental pulp cells.

Clinical relevance

This finding initiated the study to evaluate the suitability of nacre as biomaterial for dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murray PE, Garcia-Godoy F, Hargreaves KM (2007) Regenerative endodontics: a review of current status and a call for action. J Endod 33:377–390

    Article  PubMed  Google Scholar 

  2. Nakashima M, Reddi AH (2003) The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 21:1025–1032

    Article  PubMed  Google Scholar 

  3. Nakashima M, Mizunuma K, Murakami T, Akamine A (2002) Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther 9:814–818

    Article  PubMed  Google Scholar 

  4. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  5. Yang X, van den Dolder J, Walboomers XF, Zhang W, Bian Z, Fan M et al (2007) The odontogenic potential of STRO-1 sorted rat dental pulp stem cells in vitro. J Tissue Eng Regen Med 1:66–73

    Article  PubMed  Google Scholar 

  6. Nakashima M, Akamine A (2005) The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 31:711–718

    Article  PubMed  Google Scholar 

  7. Lee SK, Lee SK, Lee SI, Park JH, Jang JH, Kim HW, Kim EC (2010) Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. J Endod 36:1537–1542

    Article  PubMed  Google Scholar 

  8. Akkouch A, Zhang Z, Rouabhia M (2014) Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (L-lactide-co-ε-caprolactone) scaffold. J Biomater Appl 28:922–936

    Article  PubMed  Google Scholar 

  9. Fricain JC, Bareille R, Ulysse F, Dupuy B, Amedee J (1998) Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite of calcite form. J Biomed Mater Res 42:96–102

    Article  PubMed  Google Scholar 

  10. Oaki Y, Imai H (2005) The hierarchical architecture of nacre and its mimetic material. Angew Chem Int Ed 44:6571–6575

    Article  Google Scholar 

  11. Weiner S, Hood L (1975) Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science 190:987–989

    Article  PubMed  Google Scholar 

  12. Bedouet L, Marie A, Dubost L, Peduzzi J, Duplat D, Berland S, Puisségur M, Boulzaguet H, Rousseau M, Milet C, Lopez E (2007) Proteomics analysis of the nacre soluble and insoluble proteins from the oyster Pinctada margaritifera. Mar Biotechnol 9:638–649

    Article  PubMed  Google Scholar 

  13. Rousseau M, Pereira-Mouriès L, Almeida MJ, Milet C, Lopez E (2003) The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 135:1–7

    PubMed  Google Scholar 

  14. Bédouet L, Schuller MJ, Marin F, Milet C, Lopez E, Giraud M (2001) Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins. Comp Biochem Physiol B 128:389–400

    Article  PubMed  Google Scholar 

  15. Pereira-Mourié L, Almeida MJ, Ribeiro C, Peuzzi J, Barthélemy M, Milet C, Lopez E (2002) Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. Eur J Biochem 269:4994–5003

    Article  Google Scholar 

  16. Lopez E, Vidal B, Berland S, Camprasse S, Camprasse G, Silve C (1992) Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell 24:667–679

    Article  PubMed  Google Scholar 

  17. Atlan G, Balmain N, Berland S, Vidal B, Lopez E (1997) Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration. C R Acad Sci III 320:253–258

    Article  PubMed  Google Scholar 

  18. Asvanund P, Chunhabundit P, Suddhasthira T (2011) Potential induction of bone regeneration by nacre: an in vitro study. Implant Dent 20:32–39

    Article  PubMed  Google Scholar 

  19. Asvanund P, Chunhabundit P (2012) Alveolar bone regeneration by implantation of nacre and B-tricalcium phosphate in guinea pig. Implant Dent 21:248–253

    Article  PubMed  Google Scholar 

  20. Mossmann T (1983) Rapid colorimetric assay for cellular growth and survival. Application to proliferation and cytotoxic assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  21. Lowry OH, Rosbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  22. Helmut B, Hildburg B, Hans JG (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  Google Scholar 

  23. Terry DE, Umstot E, Desiderio DM (2004) Optimized sample-processing time and peptide recovery for the mass spectrometric analysis of protein digests. J Am Soc Mass Spectrom 15:784–794

    Article  PubMed  Google Scholar 

  24. Thorsell A, Portelius E, Blennow K, Westman BA (2007) Evaluation of sample fractionation using microscale liquid-phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experiment. Rapid Commun Mass Spectrom 21:771–778

    Article  PubMed  Google Scholar 

  25. Johansson C, Samskog J, Sundstrom L, Wadensten H, Bjorkesten L, Flensburg J (2006) Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. Proteomics 6:4475–4485

    Article  PubMed  Google Scholar 

  26. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  Google Scholar 

  27. Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher TH, von Mering C, Jensen LJ, Bork P (2014) STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res 42:D401–D407

    Article  PubMed Central  PubMed  Google Scholar 

  28. Mouries LP, Almeida MJ, Milet C, Berland S, Lopez E (2002) Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk Pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 132:217–229

    Article  PubMed  Google Scholar 

  29. Zhu Q, Fan M, Blan Z, Chen Z, Zhang Q, Peng B (2000) In situ hybridization analysis of transforming growth factor-beta 1 RNA expression during mouse tooth development. Clin J Dent Res 3:21–25

    Google Scholar 

  30. Sassá Benedeta AP, Sobral AP, Lima DM, Kamibeppu L, Soares FA, Lourenco SV (2008) Expression of transforming growth factor-beta 1, −beta 2, and -beta3 in human developing teeth: immunolocalization according to the odontogenesis phases. Pediatr Dev Pathol 11:206–212

    Article  Google Scholar 

  31. Melin M, Joffre-Romeas A, Faeges JC, Couble ML, Magloire H, Bleicher F (2000) Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res 79:1689–1696

    Article  PubMed  Google Scholar 

  32. Kettunen P, Karavanova I, Thesleff I (1998) Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, −2, −3, and FGFR4; and stimulation of cell proliferation by FGF-2, −4, −8, and −9. Dev Genet 22:374–385

    Article  PubMed  Google Scholar 

  33. Nie X, Tian W, Zhang Y, Chen X, Dong R, Jiang M, Chen F, Jin Y (2006) Induction of transforming growth factor-beta 1 on dentine pulp cells in different culture patterns. Cell Biol Int 30:295–300

    Article  PubMed  Google Scholar 

  34. Burbelo PD, Miyamoto S, Utani A, Brill S, Yamada KM, Hall A, Yamada Y (1995) p190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking. J Biol Chem 270:30919–30926

    Article  PubMed  Google Scholar 

  35. Honda JY, Kobayashi I, Kiyoshima T, Yamaza H, Xie M, Takahashi K, Enoki N, Nagata K, Nakashima A, Sakai H (2008) Glycolytic enzyme Pgk1 is strongly expressed in the developing tooth germ of the mouse lower first molar. Histol Histopathol 23:423–432

    PubMed  Google Scholar 

  36. Shichijo S, Azuma K, Komatsu N, Ito M, Maeda Y, Ishihara Y, Itoh K (2004) Two proliferation-related proteins, TYMS and PGK1, could be new cytotoxic T lymphocyte-directed tumor-associated antigens of HLA-A2+ colon cancer. Clin Cancer Res 10:5828–5836

    Article  PubMed  Google Scholar 

  37. Wang J, Ying G, Wang J, Jung Y, Lu J, Zhu J, Pienta KJ, Taichman RS (2010) Characterization of PGK1 expression by stromal cells derived from the tumor microenvironment in prostate cancer progression. Cancer Res 15:471–480

    Article  Google Scholar 

  38. Saad FA, Hofstaetter JG (2011) Proteomic analysis of mineralizing osteoblasts identifies novel genes related to bone matrix mineralization. Int Orthop 22:447–451

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titikan Laothumthut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laothumthut, T., Jantarat, J., Paemanee, A. et al. Shotgun proteomics analysis of proliferating STRO-1-positive human dental pulp cell after exposure to nacreous water-soluble matrix. Clin Oral Invest 19, 261–270 (2015). https://doi.org/10.1007/s00784-014-1256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1256-8

Keywords

Navigation