Skip to main content

Advertisement

Log in

Effect of growth factors on antimicrobial peptides and pro-inflammatory mediators during wound healing

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Background

Antimicrobial peptides (AMPs), such as human beta-defensin-2 (hBD-2) and the CC-chemokine ligand 20 (CCL20), exhibit direct microbicidal effects and mediator-like activity. It was hypothesized that wounding induces the expression of AMPs and pro-inflammatory mediators and that endogenous mediators, such as insulin-like growth factor-1 (IGF-1) and transforming growth factor-alpha (TGF-alpha), modulate this induced expression.

Material and methods

Monolayers of gingival epithelial cells (GECs) and gingival fibroblast (HGFs) from three different donors were wounded using the scratch assay (in vitro wounding) in the presence (test group) or absence (control group) of IGF-1 and TGF-alpha. In vitro wound closure was monitored over time (0, 6, 24, 48, 72 h), and wound areas were microscopically analyzed (Axio-Vision® Software, Zeiss). Gene expression analysis of the GAPDH, hBD-2, CCL20, interleukin-1 beta (IL-1 beta), and interleukin-8 (IL-8) was performed by qPCR.

Results

In comparison to control cells, IGF-1 and TGF-alpha significantly enhanced in vitro wound closure (P < 0.05). In GECs, IGF-1 induced the gene expression of IL-1 beta and IL-8 when compared to control cells (P < 0.05). In HGFs, wounding per se induced the messenger RNA of hBD-2, CCL20, and IL-1 beta, whereas IGF-1 and TGF-alpha reversed this effect (P < 0.05).

Conclusion

In gingival cells, the gene expression of AMPs was altered by injury, and endogenous growth factors further influenced the expression profiles, but with high interindividual differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stavropoulos A, Wikesjo UM (2012) Growth and differentiation factors for periodontal regeneration: a review on factors with clinical testing. J Periodontal Res 47:545–553. doi:10.1111/j.1600-0765.2012.01478.x

    Article  PubMed  Google Scholar 

  2. Raja S, Byakod G, Pudakalkatti P (2009) Growth factors in periodontal regeneration. Int J Dental Hyg 7:82–89. doi:10.1111/j.1601-5037.2009.00380.x

    Article  Google Scholar 

  3. Yu F-SX, Yin J, Xu K, Huang J (2010) Growth factors and corneal epithelial wound healing. Brain Res Bull 81:229–235. doi:10.1016/j.brainresbull.2009.08.024

    Article  PubMed Central  PubMed  Google Scholar 

  4. Annunziata M, Granata R, Ghigo E (2011) The IGF system. Acta Diabetol 48:1–9. doi:10.1007/s00592-010-0227-z

    Article  PubMed  Google Scholar 

  5. Han X, Amar S (2003) IGF-1 signaling enhances cell survival in periodontal ligament fibroblasts vs. gingival fibroblasts. J Dental Res 82:454–9

    Article  Google Scholar 

  6. Bennett NT, Schultz GS (1993) Growth factors and wound healing: biochemical properties of growth factors and their receptors. Ame J Surg 165:728–737

    Article  Google Scholar 

  7. Marikovsky M, Vogt P, Eriksson E, Rubin JS, Taylor WG, Joachim S, Klagsbrun M (1996) Wound fluid-derived heparin-binding EGF-like growth factor (HB-EGF) is synergistic with insulin-like growth factor-I for Balb/MK keratinocyte proliferation. J Invest Dermatol 106:616–621

    Article  PubMed  Google Scholar 

  8. Pierre EJ, Perez-Polo JR, Mitchell AT, Matin S, Foyt HL, Herndon DN (1997) Insulin-like growth factor-I liposomal gene transfer and systemic growth hormone stimulate wound healing. J Burn Care & Rehabil 18:287–291

    Article  Google Scholar 

  9. Steenfos HH (1994) Growth factors and wound healing. Scand J Plast Reconstr Surg Hand Surg / Nordisk Plastikkirurgisk Forening [and] Nordisk klubb for Handkirurgi 28:95–105

    Article  Google Scholar 

  10. Brown DL, Kane CD, Chernausek SD, Greenhalgh DG (1997) Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice. Am J Pathol 151:715–724

    PubMed Central  PubMed  Google Scholar 

  11. Blakytny R, Jude EB, Martin Gibson J, Boulton AJ, Ferguson MW (2000) Lack of insulin-like growth factor 1 (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. J Pathol 190:589–594. doi:10.1002/(SICI)1096-9896(200004)190:5<589::AID-PATH553>3.0.CO;2-T

    Article  PubMed  Google Scholar 

  12. Hodak E, Gottlieb AB, Anzilotti M, Krueger JG (1996) The insulin-like growth factor 1 receptor is expressed by epithelial cells with proliferative potential in human epidermis and skin appendages: correlation of increased expression with epidermal hyperplasia. J Invest Dermatol 106:564–570

    Article  PubMed  Google Scholar 

  13. Andresen JL, Ehlers N (1998) Chemotaxis of human keratocytes is increased by platelet-derived growth factor-BB, epidermal growth factor, transforming growth factor-alpha, acidic fibroblast growth factor, insulin-like growth factor-I, and transforming growth factor-beta. Curr Eye Res 17:79–87

    Article  PubMed  Google Scholar 

  14. Li Y, Fan J, Chen M, Li W, Woodley DT (2006) Transforming growth factor-alpha: a major human serum factor that promotes human keratinocyte migration. J Invest Dermatol 126:2096–2105. doi:10.1038/sj.jid.5700350

    Article  PubMed  Google Scholar 

  15. Kim I, Mogford JE, Chao JD, Mustoe TA (2001) Wound epithelialization deficits in the transforming growth factor-alpha knockout mouse. Wound Repair Regen 9:386–390

    Article  PubMed  Google Scholar 

  16. Kheradmand F, Folkesson HG, Shum L, Derynk R, Pytela R, Matthay MA (1994) Transforming growth factor-alpha enhances alveolar epithelial cell repair in a new in vitro model. Am J Physiol 267:L728–738

    PubMed  Google Scholar 

  17. Dale BA, Kimball JR, Krisanaprakornkit S, Roberts F, Robinovitch M, O’Neal R, Valore EV, Ganz T, Anderson GM, Weinberg A (2001) Localized antimicrobial peptide expression in human gingiva. J Periodontal Res 36:285–294

    Article  PubMed  Google Scholar 

  18. Dale BA (2002) Periodontal epithelium: a newly recognized role in health and disease. Periodontol 2000(30):70–78

    Article  Google Scholar 

  19. Dale BA (2003) Fascination with epithelia: architecture, proteins, and functions. J Dent Res 82:866–869

    Article  PubMed  Google Scholar 

  20. Dale BA, Fredericks LP (2005) Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issues Mol Biol 7:119–133

    PubMed Central  PubMed  Google Scholar 

  21. Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2:727–738

    Article  PubMed  Google Scholar 

  22. Chung WO, Dommisch H, Yin L, Dale BA (2007) Expression of defensins in gingiva and their role in periodontal health and disease. Curr Pharm Des 13:3073–3083

    Article  PubMed  Google Scholar 

  23. Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22:181–215

    Article  PubMed  Google Scholar 

  24. Dunsche A, Acil Y, Dommisch H, Siebert R, Schroder JM, Jepsen S (2002) The novel human beta-defensin-3 is widely expressed in oral tissues. Eur J Oral Sci 110:121–124

    Article  PubMed  Google Scholar 

  25. Dommisch H, Acil Y, Dunsche A, Winter J, Jepsen S (2005) Differential gene expression of human beta-defensins (hBD-1, -2, -3) in inflammatory gingival diseases. Oral Microbiol Immunol 20:186–190

    Article  PubMed  Google Scholar 

  26. Rizzo A, Paolillo R, Buommino E, Lanza AG, Guida L, Annunziata M, Carratelli CR (2008) Modulation of cytokine and beta-defensin 2 expressions in human gingival fibroblasts infected with Chlamydia pneumoniae. Int Immunopharmacol 8:1239–1247. doi:10.1016/j.intimp.2008.04.015

    Article  PubMed  Google Scholar 

  27. Dommisch H, Reinartz M, Backhaus T, Deschner J, Chung W, Jepsen S (2012) Antimicrobial responses of primary gingival cells to Porphyromonas gingivalis. J Clin Periodontol 39:913–922. doi:10.1111/j.1600-051X.2012.01933.x

    Article  PubMed  Google Scholar 

  28. Hoover DM, Boulegue C, Yang D, Oppenheim JJ, Tucker K, Lu W, Lubkowski J (2002) The structure of human macrophage inflammatory protein-3alpha/CCL20. Linking antimicrobial and CC chemokine receptor-6-binding activities with human beta-defensins. J Biol Chem 277:37647–37654

    Article  PubMed  Google Scholar 

  29. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    Article  PubMed  Google Scholar 

  30. Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14:409–426

    Article  PubMed  Google Scholar 

  31. Yang D, Chen Q, Chertov O, Oppenheim JJ (2000) Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 68:9–14

    PubMed  Google Scholar 

  32. Hasturk H, Kantarci A, Goguet-Surmenian E, Blackwood A, Andry C, Serhan CN, Van Dyke TE (2007) Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J Immunol 179:7021–7029

    Article  PubMed  Google Scholar 

  33. Weber A, Wasiliew P, Kracht M (2010) Interleukin-1beta (IL-1beta) processing pathway. Sci Signal 3:cm2. doi:10.1126/scisignal.3105cm2

    Google Scholar 

  34. Schroder JM, Christophers E (1992) The biology of NAP-1/IL-8, a neutrophil-activating cytokine. Immunol Ser 57:387–416

    PubMed  Google Scholar 

  35. Dommisch H, Chung WO, Rohani MG, Williams D, Rangarajan M, Curtis MA, Dale BA (2007) Protease-activated receptor 2 mediates human beta-defensin 2 and CC chemokine ligand 20 mRNA expression in response to proteases secreted by Porphyromonas gingivalis. Infect Immun 75:4326–4333

    Article  PubMed Central  PubMed  Google Scholar 

  36. Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y, Dai X, Tohyama M, Nagai H, Yang L, Higashiyama S, Yoshimura A, Sugai M, Hashimoto K (2005) Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 175:4662–4668

    Article  PubMed  Google Scholar 

  37. Dommisch H, Chung WO, Jepsen S, Hacker BM, Dale BA (2010) Phospholipase C, p38/MAPK, and NF-kappaB-mediated induction of MIP-3alpha/CCL20 by Porphyromonas gingivalis. Innate Immun 16:226–234. doi:10.1177/1753425909339237

    Article  PubMed Central  PubMed  Google Scholar 

  38. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed Central  PubMed  Google Scholar 

  39. Harishkumar M, Masatoshi Y, Hiroshi S, Tsuyomu I, Masugi M (2013) Revealing the mechanism of in vitro wound healing properties of Citrus tamurana extract. BioMed Res Int 2013:963457. doi:10.1155/2013/963457

    Article  PubMed Central  PubMed  Google Scholar 

  40. Mustafa M, Zarrough A, Bolstad AI, Lygre H, Mustafa K, Hasturk H, Serhan CN, Kantarci A, Van Dyke TE (2013) Resolvin D1 protects periodontal ligament. Am J Physiol Cell Physiol. doi:10.1152/ajpcell.00242.2012

    PubMed Central  PubMed  Google Scholar 

  41. Tang XP, Tang GD, Fang CY, Liang ZH, Zhang LY (2013) Effects of ginsenoside Rh2 on growth and migration of pancreatic cancer cells. World J Gastroenterol : WJG 19:1582–1592. doi:10.3748/wjg.v19.i10.1582

    Article  PubMed Central  PubMed  Google Scholar 

  42. Elijah IE, Branski LK, Finnerty CC, Herndon DN (2011) The GH/IGF-1 system in critical illness. Best Practice &amp; Research Clinical Endocrinology &amp. Metabolism 25:759–767. doi:10.1016/j.beem.2011.06.002

    Google Scholar 

  43. Oberringer M, Meins C, Bubel M, Pohlemann T (2008) In vitro wounding: effects of hypoxia and transforming growth factor beta1 on proliferation, migration and myofibroblastic differentiation in an endothelial cell-fibroblast co-culture model. J Mol Histol 39:37–47. doi:10.1007/s10735-007-9124-3

    Article  PubMed  Google Scholar 

  44. Wang L, Ko CY, Meyers EE, Pedroja BS, Pelaez N, Bernstein AM (2011) Concentration-dependent effects of transforming growth factor beta1 on corneal wound healing. Mol Vision 17:2835–2846

    Google Scholar 

  45. Tall EG, Bernstein AM, Oliver N, Gray JL, Masur SK (2010) TGF-beta-stimulated CTGF production enhanced by collagen and associated with biogenesis of a novel 31-kDa CTGF form in human corneal fibroblasts. Invest Ophthalmol Vis Sci 51:5002–5011. doi:10.1167/iovs.09-5110

    Article  PubMed Central  PubMed  Google Scholar 

  46. Garlick JA, Parks WC, Welgus HG, Taichman LB (1996) Re-epithelialization of human oral keratinocytes in vitro. J Dental Res 75:912–918

    Article  Google Scholar 

  47. Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 127:594–604

    Article  PubMed  Google Scholar 

  48. Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology 111:273–281

    Article  PubMed Central  PubMed  Google Scholar 

  49. Joly S, Organ CC, Johnson GK, McCray PB Jr, Guthmiller JM (2005) Correlation between beta-defensin expression and induction profiles in gingival keratinocytes. Mol Immunol 42:1073–1084. doi:10.1016/j.molimm.2004.11.001

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors kindly thank Mrs. J. Eich and Ms. D. Lalaouni for their excellent technical assistance. This study was financially supported by the German Society of Periodontology (Deutsche Gesellschaft für Parodontologie, DGP; authors: H.D., S.J.) and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG, Clinical Research Unit 208; authors: TP2, H.D., S.J.; TP7, W.G.; TP4, J.D.; TP8, A.J.; TP9, L.H.; TP10, J.W.).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dommisch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dommisch, H., Winter, J., Götz, W. et al. Effect of growth factors on antimicrobial peptides and pro-inflammatory mediators during wound healing. Clin Oral Invest 19, 209–220 (2015). https://doi.org/10.1007/s00784-014-1239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1239-9

Keywords

Navigation