Skip to main content
Log in

Some no-arbitrage rules under short-sales constraints, and applications to converging asset prices

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Under short-sales prohibitions, no free lunch with vanishing risk (NFLVRS) is known to be equivalent to the existence of an equivalent supermartingale measure for the price process (Pulido in Ann. Appl. Probab. 24:54–75, 2014). We give a necessary condition for the drift of a price process to satisfy NFLVRS. For two given price processes, we introduce the concept of fundamental supermartingale measure, and when a certain condition necessary for the construction of this fundamental supermartingale measure is not fulfilled, we provide the corresponding arbitrage portfolios. The motivation of our study lies in understanding the particular case of converging prices, i.e., two prices that coincide at a bounded random time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In order to preserve the compatibility with the decomposition result in Theorem 3.4, \(dA\) is assumed absolutely continuous with respect to \(d\langle M^{Y}\rangle \). This property is solely used for constructing an arbitrage portfolio in Lemma 4.7.

References

  1. Ansel, J.-P., Stricker, C.: Lois de martingale, densités et décomposition de Föllmer Schweizer. Ann. IHP, Phys. Théor. 28, 375–392 (1992)

    MATH  Google Scholar 

  2. Back, K.: Asset pricing for general processes. J. Math. Econ. 20, 371–395 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bain, A., Crisan, D.: Fundamentals in Stochastic Filtering. Springer, New York (2009)

    Book  MATH  Google Scholar 

  4. Brémaud, P., Yor, M.: Changes of filtration and of probability measures. Z. Wahrscheinlichkeitstheor. Verw. Geb. 45, 269–295 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Choulli, T., Stricker, C.: Deux applications de la décomposition de Galtchouk–Kunita–Watanabe. In: Azéma, J., et al. (eds.) Séminaire de Probabilités XXX. Lecture Notes in Mathematics, vol. 1626, pp. 12–23. Springer, Berlin (1996)

    Chapter  Google Scholar 

  6. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delbaen, F., Schachermayer, W.: The existence of absolutely continuous local martingale measures. Ann. Appl. Probab. 5, 926–945 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dellacherie, C., Meyer, P.-A.: Probabilities and Potential B: Theory of Martingales. North-Holland Publishing Company, Amsterdam–New York–Oxford (1980)

    Google Scholar 

  10. Elliott, R.J., Jeanblanc, M., Yor, M.: On models of default risk. Math. Finance 10, 179–196 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Föllmer, H., Schweizer, M.: Hedging of contingent claims under incomplete information. In: Davis, M.H.A., Elliott, R.J. (eds.) Applied Stochastic Analysis, Stochastics Monographs, vol. 5, pp. 389–414. Gordon and Breach, London (1991)

    Google Scholar 

  12. Frittelli, M.: Semimartingales and asset pricing under constraints. In: Dempster, M.A.H., Pliska, S.R. (eds.) Mathematics of Derivative Securities. Publications of the Newton Institute, vol. 15, pp. 265–277. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

  13. He, S., Wang, J., Yan, J.: Semimartingale Theory and Stochastic Calculus (1992). Science Press, CRC Press

    MATH  Google Scholar 

  14. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  15. Jarrow, R., Protter, P., Pulido, S.: The effect of trading futures on short sale constraints. Math. Finance 25, 311–338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jouini, E., Kallal, H.: Arbitrage in securities markets with short-sales constraints. Math. Finance 5, 197–232 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch. 11, 447–493 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Napp, C.: The Dalang–Morton–Willinger theorem under cone constraints. J. Math. Econ. 39, 111–126 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nikeghbali, A.: An essay on the general theory of stochastic processes. Probab. Surv. 3, 345–412 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pham, H., Touzi, N.: The fundamental theorem of asset pricing with cone constraints. J. Math. Econ. 31, 265–279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pulido, S.: The fundamental theorem of asset pricing, the hedging problem and maximal claims in financial markets with short sales prohibitions. Ann. Appl. Probab. 24, 54–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schweizer, M.: Martingale densities for general asset prices. J. Math. Econ. 21, 363–378 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schweizer, M.: On the minimal martingale measure and the Föllmer–Schweizer decomposition. Stoch. Anal. Appl. 13, 573–599 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very indebted to Martin Schweizer and two anonymous referees for the careful reading and many suggestions that helped improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Coculescu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Monique Jeanblanc is supported by Chair Markets in Transition (Fédération Bancaire Française) and Labex ANR 11-LABX-0019.

Appendix A: Some recalls on measures and increasing processes

Appendix A: Some recalls on measures and increasing processes

For the reader’s convenience, we gather here some elementary results that are used in the paper.

Theorem A.1

Let\(\mu ^{1}\)and\(\mu ^{2}\)be two finite (possibly signed) measures.

(a) Assume that both\(\mu ^{1}\)and\(\mu ^{2}\)are positive measures. Then\(\mu ^{1}-\mu ^{2}\)is a positive measure only if\(\mu ^{2}\)is absolutely continuous with respect to\(\mu ^{1}\).

(b) Assume that\(\mu ^{1}\)is singular with respect to\(\mu ^{2}\)and furthermore\(\mu ^{1}+\mu ^{2}\)is a positive measure. Then both\(\mu ^{1}\)and\(\mu ^{2}\)are positive measures.

Given a filtered probability space, we call an increasing process a process that is positive, adapted and whose paths are increasing and càdlàg. A process which can be written as the difference of two increasing processes is called a process of finite variation.

An increasing process can be seen as a random measure \(dA_{t} (\omega )\) on \(\mathbb{R}_{+}\) whose distribution function is \(A_{\cdot }( \omega )\). Similarly, a process of finite variation can be seen as a signed random measure, since it can be written as the difference of two increasing processes.

Proposition A.2

([14, Proposition 3.13])Let\(A\), \(B\)be finite variation processes (resp. increasing processes) such that\(dB\ll dA\). Then there exists an optional (resp. positive) process\(H\)such that\(B=\int HdA\)up to an evanescent set. If moreover\(A\)and\(B\)are predictable, one may choose\(H\)to be predictable.

Proposition A.3

([7])

Let\(A\), \(B\)be càdlàg, predictable processes of finite variation, with\(B\)being increasing. Then there exist a predictable process\(\varphi \)and a predictable subset\(N\)of\(\Omega \times \mathbb{R}_{+}\)such that

A=φdB+ 1 N dA

and

R + 1 N (u)d B u =0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coculescu, D., Jeanblanc, M. Some no-arbitrage rules under short-sales constraints, and applications to converging asset prices. Finance Stoch 23, 397–421 (2019). https://doi.org/10.1007/s00780-019-00386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-019-00386-3

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation