Skip to main content
Log in

Short-term asymptotics for the implied volatility skew under a stochastic volatility model with Lévy jumps

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

The implied volatility skew has received relatively little attention in the literature on short-term asymptotics for financial models with jumps, despite its importance in model selection and calibration. We rectify this by providing high order asymptotic expansions for the at-the-money implied volatility skew, under a rich class of stochastic volatility models with independent stable-like jumps of infinite variation. The case of a pure-jump stable-like Lévy model is also considered under the minimal possible conditions for the resulting expansion to be well defined. Unlike recent results for “near-the-money” option prices and implied volatility, the results herein aid in understanding how the implied volatility smile near expiry is affected by important features of the continuous component, such as the leverage and vol-of-vol parameters. As intermediary results, we obtain high order expansions for at-the-money digital call option prices, which furthermore allow us to infer analogous results for the delta of at-the-money options. Simulation results indicate that our asymptotic expansions give good fits for options with maturities up to one month, underpinning their relevance in practical applications, and an analysis of the implied volatility skew in recent S&P 500 options data shows it to be consistent with the infinite variation jump component of our models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Practitioners commonly use the terms “skew” and “implied volatility skew” for the ATM slope of the implied volatility curve for a given expiration date (see e.g. [34]). We use the terms interchangeably.

  2. For a Lévy process \(X\) with Lévy measure \(\nu\), the Blumenthal–Getoor index is defined as \(\inf\{p\geq 0:\int_{\{|x|\leq 1\}}|x|^{p}\nu(dx)<\infty\}\).

  3. Equivalently, \(Z_{t}^{(p)}\) and \(Z_{t}^{(n)}\) are \(Y\)-stable random variables with location parameter 0, skewness parameters 1 and −1, and respective scale parameters \((tC(1)|\cos(\pi Y/2)|\Gamma(-Y))^{1/Y}\) and \((tC(-1)|\cos(\pi Y/2)|\Gamma(-Y))^{1/Y}\).

  4. In addition to traditional S&P 500 index options (SPX), our dataset includes SPXQ (quarterly) and SPXW (weekly) options. The latter class was first introduced in 2005, and by the end of 2014, it accounted for over 40 % of the overall trading of S&P 500 options on the CBOE (see Fig. 2 in [6]).

  5. The ATM strike is taken to be the strike price at which the call and put options prices are closest in value. We also set the risk-free interest rate to zero, but using a nonzero rate based on U.S. treasury yields did not change the results of our analysis since the rate is close to zero over the sample period and the time-to-maturity is small.

  6. The 25-delta put (resp. call) is the option whose strike price has been chosen such that the option’s delta is −0.25 (resp. 0.25). For each maturity, we choose the put (resp. call) whose delta is closest in value to −0.25 (resp. 0.25).

  7. Repeating the analysis using 10-delta options did not have a qualitative effect on the outcome.

  8. Pooling data also makes this estimation procedure viable for indices with fewer liquid maturities than S&P 500, as well as individual equity names.

References

  1. Aït-Sahalia, Y., Jacod, J.: Estimating the degree of activity of jumps in high-frequency data. Ann. Stat. 37, 2202–2244 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aït-Sahalia, Y., Jacod, J.: Is Brownian motion necessary to model high-frequency data? Ann. Stat. 38, 3093–3128 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aït-Sahalia, Y., Lo, A.: Nonparametric estimation of state-price densities implicit in financial asset prices. J. Finance 53, 499–547 (1998)

    Article  Google Scholar 

  4. Alòs, E., León, J., Vives, J.: On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11, 571–589 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andersen, L., Lipton, A.: Asymptotics for exponential Lévy processes and their volatility smile: survey and new results. Int. J. Theor. Appl. Finance 16, 1–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andersen, T., Fusari, N., Todorov, V.: Pricing short-term market risk: evidence from weekly options. NBER working paper no. 2149 (2015). Available online at: http://nber.org/papers/w21491

  7. Bakshi, G., Kapadia, N., Madan, D.: Stock return characteristics, skew laws, and the differential pricing of individual equity options. Rev. Financ. Stud. 16, 101–143 (2003)

    Article  Google Scholar 

  8. Bates, D.S.: The crash of ’87: was it expected? The evidence from options markets. J. Finance 46, 1009–1044 (1991)

    Article  Google Scholar 

  9. Bergomi, L.: Smile dynamics. Risk Mag. 9, 117–123 (2004)

    Google Scholar 

  10. Bergomi, L.: Stochastic Volatility Modeling. Chapman & Hall, London (2016)

    MATH  Google Scholar 

  11. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  12. Carr, P., Geman, H., Madan, D., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 303–325 (2002)

    Google Scholar 

  13. Carr, P., Wu, L.: What type of process underlies options? A simple robust test. J. Finance 58, 2581–2610 (2003)

    Article  Google Scholar 

  14. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall, London (2004)

    MATH  Google Scholar 

  15. De Leo, L., Vargas, V., Ciliberti, S., Bouchaud, J.-P.: We’ve walked a million miles for one of these smiles. Preprint (2012). Available online at: http://arxiv.org/abs/1203.5703

  16. Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994)

    Google Scholar 

  17. Fajardo, J., Mordecki, E.: Skewness premium with Lévy processes. Quant. Finance 14, 1619–1626 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Figueroa-López, J.E., Forde, M.: The small-maturity smile for exponential Lévy models. SIAM J. Financ. Math. 3, 33–65 (2012)

    Article  MATH  Google Scholar 

  19. Figueroa-López, J.E., Gong, R., Houdré, C.: High-order short-time expansions for ATM option prices of exponential Lévy models. Math. Finance 26, 516–557 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Figueroa-López, J.E., Houdré, C.: Small-time expansions for the transition distribution of Lévy processes. In: Stochastic Processes and Their Applications, vol. 119, pp. 3862–3889 (2009)

    Google Scholar 

  21. Figueroa-López, J.E., Ólafsson, S.: Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility. Finance Stoch. 20, 219–265 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fukasawa, M.: Short-time at-the-money skew and rough fractional volatility. Quant. Finance (2016, to appear). Available online at: https://arxiv.org/abs/1501.06980. doi:10.1080/14697688.2016.1197410

  23. Gao, K., Lee, R.: Asymptotics of implied volatility to arbitrary order. Finance Stoch. 18, 349–392 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gatheral, J.: The Volatility Surface: A Practitioner’s Guide. Wiley Finance Series (2006)

    Google Scholar 

  25. Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Working paper (2014). Available online at: https://arxiv.org/abs/1410.3394

  26. Gerhold, S., Gülüm, I.C., Pinter, A.: The small-maturity implied volatility slope for Lévy models. Appl. Math. Finance 23, 135–157 (2016)

    Article  MathSciNet  Google Scholar 

  27. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, Berlin (1997)

    MATH  Google Scholar 

  28. Kawai, R.: On sequential calibration for an asset price model with piecewise Lévy processes. IAENG Int. J. Appl. Math. 40, 239–246 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Konikov, M., Madan, D.: Stochastic volatility via Markov chains. Rev. Deriv. Res. 5, 81–115 (2002)

    Article  MATH  Google Scholar 

  30. Koponen, I.: Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E 52, 1197–1199 (1995)

    Article  Google Scholar 

  31. Lee, R.: Implied volatility: statics, dynamics, and probabilistic interpretation. In: Baeza-Yates, R., et al. (eds.) Recent Advances in Applied Probability, pp. 241–268. Springer, New York (2005)

    Chapter  Google Scholar 

  32. Medvedev, A., Scailllet, O.: Approximation and calibration of short-term implied volatility under jump-diffusion stochastic volatility. Rev. Financ. Stud. 20, 427–459 (2007)

    Article  Google Scholar 

  33. Mijatović, A., Tankov, P.: A new look at short-term implied volatility in asset price models with jumps. Math. Finance 26, 149–183 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mixon, S.: What does implied volatility skew measure? J. Deriv. 18(4), 9–25 (2011)

    Article  Google Scholar 

  35. Muhle-Karbe, J., Nutz, M.: Small-time asymptotics of option prices and first absolute moments. J. Appl. Probab. 48, 1003–1020 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ólafsson, S.: Applications of short-time asymptotic methods to option pricing and change-point detection for Lévy processes. Ph.D. thesis, Purdue University (2015). Available online at: http://docs.lib.purdue.edu/dissertations/AAI3734543/

  37. Pan, J.: The jump-risk premia implicit in options: evidence from an integrated time-series study. J. Financ. Econ. 63, 3–50 (2002)

    Article  Google Scholar 

  38. Roper, M., Rutkowski, M.: On the relationship between the call price surface and the implied volatility surface close to expiry. Int. J. Theor. Appl. Finance 12, 427–441 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rosenbaum, M., Tankov, P.: Asymptotic results for time-changed Lévy processes sampled at hitting times. In: Stochastic Processes and their Applications, vol. 121, pp. 1607–1633 (2011)

    Google Scholar 

  40. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  41. Schoutens, W.: Lévy Processes in Finance. Wiley, New York (2003)

    Book  Google Scholar 

  42. Tankov, P.: Pricing and hedging in exponential Lévy models: review of recent results. In: Carmona, R., et al. (eds.) Paris–Princeton Lectures on Mathematical Finance. Lecture Notes in Mathematics, vol. 2003, pp. 319–359. Springer, Berlin (2010)

    Google Scholar 

  43. Xing, Y., Zhang, X., Zhao, R.: What does individual option volatility smirk tell us about future equity returns? J. Financ. Quant. Anal. 45, 641–662 (2010)

    Article  Google Scholar 

  44. Yan, S.: Jump risk, stock returns, and slope of implied volatility smile. J. Financ. Econ. 99, 216–233 (2011)

    Article  Google Scholar 

  45. Zhang, J.E., Xiang, Y.: The implied volatility smirk. Quant. Finance 8, 263–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zolotarev, V.M.: One-Dimensional Stable Distributions. Am. Math. Soc., Providence (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge two anonymous reviewers and the editor for providing constructive and insightful comments, which improved significantly the quality of the manuscript. The authors would also like to thank Christian Houdré and Frederi Viens for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Figueroa-López.

Additional information

Research supported in part by the NSF Grant: DMS-1149692.

Appendix: Additional proofs

Appendix: Additional proofs

Lemma A.1

Let \(V\) be as in (1.8), with \(\mu(Y_{t})\) and \(\sigma(Y_{t})\) replaced by \(\bar{\mu}_{t}\) and \(\bar{\sigma}_{t}\) defined in (4.8). Also let \(\bar{\sigma}'\), \(\bar{\sigma}''\), \(\bar{\alpha}\) and \(\bar{\gamma}\) be the stopped processes in (4.20) and \(\bar{\sigma}_{t}^{*}:=\sqrt{\frac{1}{t}\int_{0}^{t}\bar{\sigma}_{s}^{2}ds}\). Then the following relations hold for any \(p\geq1\):

  1. (i)

    \({\mathbb {E}}[|\bar{\mu}_{t}-\mu_{0}|^{p}] = O(t^{\frac{p}{2}}),\quad t\to0\).

  2. (ii)

    \({\mathbb {E}}[|\bar{\sigma}_{t}-\sigma_{0}|^{p}] = O(t^{\frac{p}{2}}),\quad t\to0\).

  3. (iii)

    \({\mathbb {E}}[|\bar{\sigma}^{*}_{t}-\sigma_{0}|^{p}] = O(t^{\frac {p}{2}}),\quad t\to0\).

  4. (iv)

    \({\mathbb {E}}[\bar{\sigma}_{t}^{*}-\sigma_{0}] = O(t), \quad t\to0\).

  5. (v)

    For \(\xi_{t}^{1},\xi_{t}^{2}\) and \(\xi_{t}^{1,0}\) defined as in (4.20) and (4.21), we have \({\mathbb {E}}[|\xi_{t}^{1}|]=O(t)\) and \({\mathbb {E}}[|\xi _{t}^{2}|]+{\mathbb {E}}[|\xi_{t}^{1}-\xi_{t}^{1,0}|] = O(t^{\frac{3}{2}})\), \(t\to0\).

  6. (vi)

    \({\mathbb {E}}[|\bar{\sigma}_{t}^{*}-\sigma_{0}-\sigma_{0}'\gamma_{0}\frac {1}{t}\int_{0}^{t}W_{s}^{1}ds|]=O(t),\quad t\to0\).

Proof

Let \(L\) be a common Lipschitz constant for \(\mu\), \(\sigma\) and \(\gamma\).

(i) By the Lipschitz-continuity of \(\mu\) and the Burkholder–Davis–Gundy (BDG) inequality, we can find a constant \(C_{p}\) such that

$$\begin{aligned} {\mathbb {E}}[|\bar{\mu}_{t}-\mu_{0}|^{p}] & \leq L^{p}{\mathbb {E}}[|Y_{t\wedge \tau}-y_{0}|^{p}]\\ &\leq L^{p}C_{p}\bigg({\mathbb {E}}\bigg[\int_{0}^{t}\bar{\alpha}_{s}ds\bigg]^{p}+{\mathbb {E}}\bigg[\int_{0}^{t}\bar{\gamma}^{2}_{s}ds\bigg]^{\frac {p}{2}}\bigg) =O(t^{\frac{p}{2}}),\quad t\to0, \end{aligned}$$

since \(\alpha\) and \(\gamma\) are bounded.

(ii) is proved in a similar way, and for (iii) we use the boundedness of \(\sigma\), Jensen’s inequality and (ii) to write

$$\begin{aligned} {\mathbb {E}}[|\bar{\sigma}^{*}_{t}-\sigma_{0}|^{p}] &\leq\frac{1}{(2m)^{p}}{\mathbb {E}}\bigg[\frac{1}{t}\int_{0}^{t}(\bar{\sigma}^{2}_{s}-\sigma^{2}_{0})ds\bigg]^{p}\\ &\leq\bigg(\frac{M}{m}\bigg)^{p}\frac{1}{t}\int_{0}^{t}{\mathbb {E}}[\bar{\sigma}_{s}-\sigma_{0}]^{p}ds =O(t^{\frac{p}{2}}),\quad t\to0. \end{aligned}$$

(iv) We can write

$${\mathbb {E}}[\bar{\sigma}_{t}^{*}-\sigma_{0}] =\frac{1}{2\sigma_{0}}{\mathbb {E}}[(\bar{\sigma}_{t}^{*})^{2}-\sigma_{0}^{2}] +{\mathbb {E}}\bigg[\big((\bar{\sigma}_{t}^{*})^{2}-\sigma_{0}^{2}\big)\bigg(\frac{1}{(\bar{\sigma}_{t}^{*}+\sigma_{0})}-\frac{1}{(2\sigma_{0})}\bigg)\bigg], $$

where the second term is of order \(O(t)\) by (iii), while for the first term we have by Itô’s lemma

$$\begin{aligned} & {\mathbb {E}}[(\bar{\sigma}_{t}^{*})^{2}-\sigma_{0}^{2}] \\ &= {\mathbb {E}}\bigg[\frac{1}{t}\int_{0}^{t}\bigg(\int_{0}^{s}2\bar{\sigma}_{u}\bar{\sigma}'_{u}\bar{\gamma}_{u}dW_{u}^{1}+\int_{0}^{s}\big(2\bar{\sigma}_{u}\bar{\sigma}'_{u}\bar{\alpha}_{u}+(\bar{\sigma}'_{u})^{2}+\bar{\sigma}_{u}\bar{\sigma}''_{u}\big)du\bigg)ds\bigg]\\ &=O(t),\quad t\to0, \end{aligned}$$

since the expected value of the stochastic integral is zero.

(v) By Cauchy’s inequality and Itô’s isometry, we have

$$\begin{aligned} {\mathbb {E}}[|\xi_{t}^{2}|] \leq\sqrt{\int_{0}^{t}{\mathbb {E}}\bigg[\int _{0}^{s}\bigg(\bar{\sigma}'_{u}\bar{\alpha}_{u}+\frac{1}{2}\bar{\sigma}''_{u} \bar{\gamma}^{2}_{u}\bigg)du\bigg]^{2} ds}=O(t^{\frac{3}{2}}),\quad t\to0. \end{aligned}$$

Similarly,

$$\begin{aligned} {\mathbb {E}}[|\xi_{t}^{1}-\xi_{t}^{1,0}|] \leq\sqrt{\int_{0}^{t}\int _{0}^{s}{\mathbb {E}}[\bar{\sigma}'_{u}\bar{\gamma}_{u}-\sigma'_{0} \gamma _{0}]^{2}duds}=O(t^{\frac{3}{2}}),\quad t\to0, \end{aligned}$$

because the boundedness of \(\sigma'\) and \(\gamma\) allows us to find a constant \(K\) such that

$$\begin{aligned} {\mathbb {E}}[\bar{\sigma}'_{u}\bar{\gamma}_{u}-\sigma'_{0}\gamma_{0}]^{2} &\leq K{\mathbb {E}}[\bar{\gamma}_{u}-\gamma_{0}]^{2} + K{\mathbb {E}}[\bar{\sigma}'_{u}-\sigma'_{0}]^{2}\\ &\leq2LK{{\mathbb {E}}[Y_{u\wedge{}\tau}-y_{0}]^{2}} = O(u),\quad u\to0, \end{aligned}$$

where in the last step we again used the BDG inequality. Similarly, Cauchy’s inequality and Itô’s isometry yield \({\mathbb {E}}[|\xi _{t}^{1}|]=O(t)\), as \(t\to0\).

(vi) follows from the triangle inequality and the following three identities. First, by (iii) above, we have

$$\begin{aligned} {\mathbb {E}}\bigg[\bigg|\bar{\sigma}_{t}^{*}-\sigma_{0}-\frac{(\bar{\sigma}_{t}^{*})^{2}-\sigma_{0}^{2}}{2\sigma_{0}}\bigg|\bigg] =\frac{1}{2\sigma_{0}}{\mathbb {E}}[\bar{\sigma}_{t}^{*}-\sigma _{0}]^{2}=O(t),\quad t\to0. \end{aligned}$$

Second, by Itô’s lemma,

$$\begin{aligned} & {\mathbb {E}}\bigg[\bigg|(\bar{\sigma}_{t}^{*})^{2}-\sigma_{0}^{2}-\frac {1}{t}\int_{0}^{t}\int_{0}^{s}2\bar{\sigma}_{u}\bar{\sigma}'_{u}\bar{\gamma}_{u}dW_{u}^{1}ds\bigg|\bigg]\\ &\leq\frac{1}{t} \int_{0}^{t}\int_{0}^{s}{\mathbb {E}}\bigg[\bigg|2\bar{\sigma}_{u}\bar{\sigma}'_{u}\bar{\alpha}_{u}+\frac{1}{2}\big((\bar{\sigma}'_{u})^{2}+\bar{\sigma}_{u}\bar{\sigma}''_{u}\big)\bar{\gamma}^{2}_{u}\bigg|\bigg]duds\\ &=O(t),\quad t\to0, \end{aligned}$$

since the integrand in the last integral is bounded. Third, Cauchy’s inequality and Itô’s isometry can be used to show

$$\begin{aligned} {\mathbb {E}}\bigg[\bigg|\frac{1}{t}\int_{0}^{t}\int_{0}^{s}(\bar{\sigma}_{u}\bar{\sigma}'_{u}\bar{\gamma}_{u}-\sigma_{0}\sigma'_{0}\gamma _{0})dW_{u}^{1}ds\bigg|\bigg] =O(t),\quad t\to0, \end{aligned}$$

by following similar steps as in the proof of (v). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueroa-López, J.E., Ólafsson, S. Short-term asymptotics for the implied volatility skew under a stochastic volatility model with Lévy jumps. Finance Stoch 20, 973–1020 (2016). https://doi.org/10.1007/s00780-016-0313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-016-0313-3

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation