Advertisement

Finance and Stochastics

, Volume 18, Issue 1, pp 39–73 | Cite as

A mathematical treatment of bank monitoring incentives

  • Henri Pagès
  • Dylan PossamaïEmail author
Article

Abstract

In this paper, we take up the analysis of a principal/agent model with moral hazard introduced by Pagès (J. Financ. Intermed. doi: 10.1016/j.jfi.2012.06.001, 2012), with optimal contracting between competitive investors and an impatient bank monitoring a pool of long-term loans subject to Markovian contagion. We provide here a comprehensive mathematical formulation of the model and show, using martingale arguments in the spirit of Sannikov (Rev. Econ. Stud. 75:957–984, 2008), how the maximization problem with implicit constraints faced by investors can be reduced to a classical stochastic control problem. The approach has the advantage of avoiding the more general techniques based on forward-backward stochastic differential equations described by Cvitanić and Zhang (Contract Theory in Continuous Time Models, Springer 2012) and leads to a simple recursive system of Hamilton–Jacobi–Bellman equations. We provide a solution to our problem by a verification argument and give an explicit description of both the value function and the optimal contract. Finally, we study the limit case where the bank is no longer impatient.

Keywords

Principal/agent problem Dynamic moral hazard Optimal incentives Optimal securitization Stochastic control Verification theorem 

Mathematics Subject Classification (2000)

60H30 91G40 

JEL Classification

G21 G28 G32 

Notes

Acknowledgements

Research partly supported by the Chair Financial Risks of the Risk Foundation sponsored by Société Générale, the Chair Derivatives of the Future sponsored by the Fédération Bancaire Française, and the Chair Finance and Sustainable Development sponsored by EDF and Calyon.

The authors would like to thank Nizar Touzi for his precious advice, as well as two anonymous referees and an associate editor who helped to improve a previous version of this paper.

References

  1. 1.
    Abreu, D., Milgrom, P., Pearce, D.: Information and timing in repeated partnerships. Econometrica 59, 1713–1733 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Aït-Sahalia, Y., Cacho-Diaz, J., Laeven, R.: Modeling financial contagion using mutually exciting jump processes. NBER working paper No. 15850, available at http://www.nber.org/papers/w15850 (2010)
  3. 3.
    Azizpour, S., Giesecke, K.: Self-exciting corporate defaults: contagion vs. frailty. Working paper, Stanford University, available at http://www.stanford.edu/dept/MSandE/cgi-bin/people/faculty/giesecke/pdfs/selfexciting.pdf (2008)
  4. 4.
    Biais, B., Mariotti, T., Rochet, J.-C., Villeneuve, S.: Large risks, limited liability and dynamic moral hazard. Econometrica 78, 73–118 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Brémaud, P.: Point Processes and Queues: Martingale Dynamics. Springer, Berlin (1981) CrossRefzbMATHGoogle Scholar
  6. 6.
    Cvitanić, J., Zhang, J.: Contract Theory in Continuous Time Models. Springer, Berlin (2012) Google Scholar
  7. 7.
    Davis, M., Lo, V.: Infectious defaults. Quant. Finance 1, 382–387 (2001) CrossRefGoogle Scholar
  8. 8.
    Dellacherie, C., Meyer, P.-A.: Probabilities and Potential, vol. B. North-Holland, Amsterdam (1982) zbMATHGoogle Scholar
  9. 9.
    DeMarzo, P., Fishman, M.: Agency and optimal investment dynamics. Rev. Financ. Stud. 20, 151–189 (2007) CrossRefGoogle Scholar
  10. 10.
    DeMarzo, P., Fishman, M.: Optimal long-term financial contracting. Rev. Financ. Stud. 20, 2079–2128 (2007) CrossRefGoogle Scholar
  11. 11.
    Frey, R., Backhaus, J.: Pricing and hedging of portfolio credit derivatives with interacting default intensities. Int. J. Theor. Appl. Finance 11, 611–634 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Giesecke, K., Kakavand, H., Mousavi, M., Takada, H.: Exact and efficient simulation of correlated defaults. SIAM J. Financ. Math. 1, 868–896 (2010) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Jarrow, R., Yu, F.: Counterparty risk and the pricing of defaultable securities. J. Finance 53, 2225–2243 (2001) Google Scholar
  14. 14.
    Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer, New York (1991) zbMATHGoogle Scholar
  15. 15.
    Kraft, H., Steffensen, M.: Bankruptcy, counterparty risk, and contagion. Rev. Finance 11, 209–252 (2007) CrossRefzbMATHGoogle Scholar
  16. 16.
    Laurent, J.-P., Cousin, A., Fermanian, J.-D.: Hedging default risks of CDOs in Markovian contagion models. Quant. Finance 12, 1773–1791 (2011) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Pagès, H.: Bank monitoring incentives and optimal ABS. J. Financ. Intermed. (2012). doi: 10.1016/j.jfi.2012.06.001 Google Scholar
  18. 18.
    Sannikov, Y.: A continuous-time version of the principal-agent problem. Rev. Econ. Stud. 75, 957–984 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Sannikov, Y., Skrzypacz, A.: Impossibility of collusion under imperfect monitoring with flexible production. Am. Econ. Rev. 97, 1794–1823 (2007) CrossRefGoogle Scholar
  20. 20.
    Sannikov, Y., Skrzypacz, A.: The role of information in repeated games with frequent actions. Econometrica 78, 847–882 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Yu, F.: Correlated defaults in intensity-based models. Math. Finance 17, 155–173 (2007) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Banque de FranceParis Cedex 01France
  2. 2.CMAPEcole PolytechniquePalaiseauFrance

Personalised recommendations