An adaptive model to support biofeedback in AmI environments: a case study in breathing training for autism

Abstract

Biofeedback systems have shown promising clinical results in regulating the autonomic nervous system (ANS) of individuals. However, they typically offer a “one-size-fits-all” solution in which the personalization of the stimuli to the needs and capabilities of its users has been largely neglected. Personalization is paramount in vulnerable populations like children with autism given their sensory diversity. Ambient intelligence (AmI) environments enable creating effective adaptive mechanisms in biofeedback to adjust the stimuli to each user’s performance. Yet, biofeedback models with adaptive mechanisms are scarce in the AmI literature. In this paper, we propose an adaptive model to support biofeedback that takes the user’s physiological data, user’s adherence to therapy, and environmental data to personalize its parameters and stimuli. Based on the proposed model, we present EtherealBreathing, a biofeedback system designed to help children with autism practice box breathing. We used the data from 20 children with autism using EtheralBreating without adaptation mechanisms to feed an adaptive model that automatically adapts the visual and audible stimuli of EtherealBreathing according to changes in each user’s physiological data. We present two scenarios showing how EtherealBreathing is capable of personalizing the stimuli, difficulty level, or supporting the therapist decisions. Results are promising in terms of performance and personalization of each user model, showing the importance of personalization for AmI technology. Finally, we discuss challenges and opportunities in using adaptive models to support biofeedback in AmI environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Ahn Y, Jayalath D, Oloyede A A framework for modularised wearable adaptive biofeedback devices. In: 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services, Healthcom 2016, vol 2016. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/HealthCom.2016.7749528

  2. 2.

    Al Osman H, Dong H, El Saddik A (2016) Ubiquitous biofeedback serious game for stress management. IEEE Access 4:1274–1286. https://doi.org/10.1109/ACCESS.2016.2548980

    Article  Google Scholar 

  3. 3.

    Al Osman H, Eid M, El Saddik A (2014) U-biofeedback: a multimedia-based reference model for ubiquitous biofeedback systems. Multimed Tools Appl 72(3):3143–3168. https://doi.org/10.1007/s11042-013-1590-x

    Article  Google Scholar 

  4. 4.

    Alhamid MF, Eid M, El Saddik A (2012) A multi-modal intelligent system for biofeedback interactions. In: MeMeA 2012 - 2012 IEEE Symposium on Medical Measurements and Applications, Proceedings, pp 1–5. https://doi.org/10.1109/MeMeA.2012.6226653

    Google Scholar 

  5. 5.

    Anagnostou E, Taylor MJ (2011) Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here. https://doi.org/10.1186/2040-2392-2-4

  6. 6.

    American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders : DSM-5. American Psychiatric Association

  7. 7.

    Bal E, Harden E, Lamb D, Van Hecke AV, Denver JW, Porges SW (2010) Emotion recognition in children with autism spectrum disorders: Relations to eye gaze and autonomic state. J Autism Dev Disord 40(3):358–370. https://doi.org/10.1007/s10803-009-0884-3

    Article  Google Scholar 

  8. 8.

    Bodolai D, Gazdi L, Forstner B, Szegletes L (2015) Supervising biofeedback-based serious games. In: 2015 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom). IEEE, pp 273–278

  9. 9.

    Bourg DM, Seemann G (2004) AI for game developers. O’Reilly Media, Inc

    Google Scholar 

  10. 10.

    Chen Y, Xu W, Sundaram H, Rikakis T, Liu SM (2007) Media adaptation framework in biofeedback system for stroke patient rehabilitation. In: Proceedings of the 15th ACM international conference on Multimedia, pp 47–57

    Google Scholar 

  11. 11.

    Cheshire WP (2012) Highlights in clinical autonomic neuroscience: New insights into autonomic dysfunction in autism. Autonomic Neuroscience: Basic and Clinical 171(1-2):4–7. https://doi.org/10.1016/j.autneu.2012.08.003

    Article  Google Scholar 

  12. 12.

    Cook DJ, Song W (2009) Ambient intelligence and wearable computing: sensors on the body, in the home, and beyond. Journal of Ambient Intelligence and Smart Environments 1(2):83–86. https://doi.org/10.3233/AIS-2009-0014

    Article  Google Scholar 

  13. 13.

    Ducatel K, Bogdanowicz M, Scapolo F, Leijten J, Burgelman JC (2001) SCE-NARIOS FOR AMBIENT INTELLIGENCE IN 2010 Final Report Compiled by. Tech. rep. (2001). URL http://www.cordis.lu/ist/istag.htm

  14. 14.

    Ebisch SJ, Gallese V, Willems RM, Mantini D, Groen WB, Romani GL, Buitelaar JK, Bekkering H (2011) Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Hum Brain Mapp 32(7):1013–1028. https://doi.org/10.1002/hbm.21085

    Article  Google Scholar 

  15. 15.

    Fleury A, Mourcou Q, Franco C, Diot B, Demongeot J, Vuillerme N (2013) Evaluation of a Smartphone-based audio-biofeedback system for improving balance in older adults - A pilot study. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp 1198–1201. https://doi.org/10.1109/EMBC.2013.6609721

    Google Scholar 

  16. 16.

    Friedrich EVC, Suttie N, Sivanathan A, Lim T, Louchart S, Pineda JA (2014) Brainˆa computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Front Neuroeng 7. https://doi.org/10.3389/fneng.2014.00021 URL http://journal.frontiersin.org/article/10.3389/fneng.2014.00021/abstract

  17. 17.

    Green EE, Green AM, Walters ED (1970) Voluntary control of internal states: psychological and physiological. J Transpersonal Psychol 2(1):1

    Google Scholar 

  18. 18.

    Harris J, Vance S (2014) Sonic respiration: controlling respiration rate abstract, pp 2383–2388

    Google Scholar 

  19. 19.

    Jansen LM, Gispen-de Wied CC, van der Gaag RJ, van Engeland H (2003) Differentiation between autism and multiple complex developmental disorder in response to psychosocial stress. Neuropsychopharmacology 28(3):582–590. https://doi.org/10.1038/sj.npp.1300046

    Article  Google Scholar 

  20. 20.

    Jansen LM, Gispen-De Wied CC, Wiegant VM, Westenberg HG, Lahuis BE, Van Engeland H (2006) Autonomic and neuroendocrine responses to a psychosocial stressor in adults with autistic spectrum disorder. J Autism Dev Disord 36(7):891–899. https://doi.org/10.1007/s10803-006-0124-z

    Article  Google Scholar 

  21. 21.

    Koegel RL, Wilhelm H (1973) Selective responding to the components of multiple visual cues by autistic children. J Exp Child Psychol 15(3):442–453. https://doi.org/10.1016/0022-0965(73)90094-5

    Article  Google Scholar 

  22. 22.

    Koenig KP, Buckley-Reen A, Garg S (2012) Efficacy of the get ready to learn yoga program among children with autism spectrum disorders: a pretest-posttest control group design. Am J Occup Ther 66(5):538–546. https://doi.org/10.5014/ajot.2012.004390

    Article  Google Scholar 

  23. 23.

    Kushki A, Drumm E, Pla Mobarak M, Tanel N, Dupuis A, Chau T, Anagnostou E (2013) Investigating the autonomic nervous system response to anxiety in children with autism spectrum disorders. PLoS ONE 8(4). https://doi.org/10.1371/journal.pone.0059730

  24. 24.

    Leape C, Fong A, Ratwani RM (2016) Heuristic usability evaluation of wearable mental state monitoring sensors for healthcare environments. In: Proceedings of the human factors and ergonomics society annual meeting, vol 60. SAGE Publications Sage CA, Los Angeles, CA, pp 583–587

    Google Scholar 

  25. 25.

    Liu H, Hu J, Rauterberg M (2009) Software architecture support for biofeedback based in-flight music systems. In: 2009 2nd IEEE International Conference on Computer Science and Information Technology. IEEE, pp 580–584

  26. 26.

    Liu NH, Chiang CY, Chu HC (2013) Recognizing the degree of human attention using EEG signals from mobile sensors. Sensors 13(8):10273–10286. https://doi.org/10.3390/s130810273 URL http://www.mdpi.com/1424-8220/13/8/10273

    Article  Google Scholar 

  27. 27.

    Lovaas OI, Schreibman L (1971) Stimulus overselectiv1ty of autistic children in a two stimulus situation. Behav Res Ther 9(4):305–310. https://doi.org/10.1016/0005-7967(71)90042-8

    Article  Google Scholar 

  28. 28.

    Lovaas OI, Schreibman L, Koegel R, Rehm R (1971) Selective responding by autistic children to multiple sensory input. J Abnorm Psychol 77(3):211–222. https://doi.org/10.1037/h0031015

    Article  Google Scholar 

  29. 29.

    Machalicek W, O’Reilly MF, Beretvas N, Sigafoos J, Lancioni GE (2007) A review of interventions to reduce challenging behavior in school settings for students with autism spectrum disorders. Res Autism Spectr Disord 1(3):229–246. https://doi.org/10.1016/j.rasd.2006.10.005

    Article  Google Scholar 

  30. 30.

    Maclean, D., Roseway, A., Czerwinski, M.: MoodWings: a wearable biofeedback device for real-time stress intervention (2013)

    Google Scholar 

  31. 31.

    McCuskey M (2000) Fuzzy logic for video games. Game Programming Gems 1:7–8

    Google Scholar 

  32. 32.

    Ming X, Julu PO, Brimacombe M, Connor S, Daniels ML (2005) Reduced cardiac parasympathetic activity in children with autism. Brain Dev 27(7):509–516. https://doi.org/10.1016/j.braindev.2005.01.003

    Article  Google Scholar 

  33. 33.

    Mintzberg H (2019) Structured observation as a method to study managerial work. Journal of

  34. 34.

    Moraveji, N., Olson, B., Nguyen, T., Saadat, M., Khalighi, Y., Pea, R., Heer, J.: Peripheral Paced Respiration: influencing user physiology during information work (2011)

    Google Scholar 

  35. 35.

    MUKAE, H., SATO, M.: The effect of color temperature of lighting sources on the autonomic nervous functions. Ann Physiol Anthropol 11(5), 533–538 (1992). DOI https://doi.org/10.2114/ahs1983.11.533, URL http://joi.jlc.jst.go.jp/JST.Journalarchive/ahs1983/11.533?from=CrossRef

  36. 36.

    Murphy CM, Deeley Q, Daly E, Ecker C, O’Brien F, Hallahan B, Loth E, Toal F, Reed S, Hales S, Robertson D, Craig M, Mullins D, Barker G, Lavender T, Johnston P, Murphy K, Murphy D (2012) Anatomy and aging of the amygdala and hippocampus in autism spectrum disorder: an in vivo magnetic resonance imaging study of Asperger syndrome. Autism Res 5(1):3–12. https://doi.org/10.1002/aur.227

    Article  Google Scholar 

  37. 37.

    Nordahl CW, Scholz R, Yang X, Buonocore MH, Simon T, Rogers S, Amaral DG (2012) Increased rate of amygdala growth in children aged 2 to 4 years with autism spectrum disorders: a longitudinal study. Arch Gen Psychiatry 69(1):53–61. https://doi.org/10.1001/archgenpsychiatry.2011.145

    Article  Google Scholar 

  38. 38.

    Pantelopoulos A, Bourbakis N (2008) A survey on wearable biosensor systems for health monitoring. In: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’08-“Personalized Healthcare through Technology”, pp 4887–4890. https://doi.org/10.1109/iembs.2008.4650309

    Google Scholar 

  39. 39.

    Peña O, Cibrian FL, Tentori M (2020) Circus in Motion: a multimodal exergame supporting vestibular therapy for children with autism. J Multimodal User Interfaces. https://doi.org/10.1007/s12193-020-00345-9

    Article  Google Scholar 

  40. 40.

    Pirovano M (2012) The use of fuzzy logic for artificial intelligence in games. University of Milano, Milano

    Google Scholar 

  41. 41.

    Prinsloo GE, Derman WE, Lambert MI, Rauch HL (2013) The effect of a single session of short duration biofeedback-induced deep breathing on measures of heart rate variability during laboratory-induced cognitive stress: a pilot study. Appl Psychophysiol Biofeedback 38(2):81–90

    Article  Google Scholar 

  42. 42.

    Ribeiro AG, Maitelli AL, Valentim RA, Brandão GB, Guerreiro AM (2010) Angelcare mobile system: Homecare patient monitoring using bluetooth and gprs. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, pp 2200–2203

  43. 43.

    Rodrigue M, Son J, Giesbrecht B, Turk M, Höllerer T (2015) Spatio-temporal detection of divided attention in reading applications using EEG and eye tracking. In: International Conference on Intelligent User Interfaces, Proceedings IUI, vol 2015-January. Association for Computing Machinery, New York, New York, USA, pp 121–125. https://doi.org/10.1145/2678025.2701382 URL http://dl.acm.org/citation.cfm?doid=2678025.2701382

    Google Scholar 

  44. 44.

    Rogers SJ, Ozonoff S (2005) Annotation: what do we know about sensory dysfunction in autism? A critical review of the empirical evidence. https://doi.org/10.1111/j.1469-7610.2005.01431.x

  45. 45.

    Schumann CM, Barnes CC, Lord C, Courchesne E (2009) Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biol Psychiatry 66(10):942–949. https://doi.org/10.1016/j.biopsych.2009.07.007

    Article  Google Scholar 

  46. 46.

    Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24(28):6392–6401. https://doi.org/10.1523/JNEUROSCI.1297-04.2004

    Article  Google Scholar 

  47. 47.

    Shamekhi A, Bickmore T (2018) Breathe deep: a breath-sensitive interactive meditation coach. In: ACM International Conference Proceeding Series. Association for Computing Machinery, New York, NY, USA, pp 108–117. https://doi.org/10.1145/3240925.3240940 URL https://dl.acm.org/doi/10.1145/3240925.3240940

    Google Scholar 

  48. 48.

    Sharry J, McDermott M, Condron J (2003) Relax to win treating children with anxiety problems with a biofeedback video game. Eisteach 2:22–26

    Google Scholar 

  49. 49.

    Smeekens I, Didden R, Verhoeven EW (2013) Exploring the relationship of autonomic and endocrine activity with social functioning in adults with autism spectrum disorders. J Autism Dev Disord 45(2):495–505. https://doi.org/10.1007/s10803-013-1947-z

    Article  Google Scholar 

  50. 50.

    Sugarman LI, Garrison BL, Williford KL (2013) Symptoms as solutions: hypnosis and biofeedback for autonomic regulation in autism spectrum disorders. Am J Clin Hypn 56(2):152–173. https://doi.org/10.1080/00029157.2013.768197

    Article  Google Scholar 

  51. 51.

    Swanson, K.S., Gevirtz, R.N., Brown, M., Spira, J., Guarneri, E., Stoletniy, L.: The effect of biofeedback on function in patients with heart failure. Appl Psychophysiol Biofeedback 34(2), 71–91 (2009). DOI https://doi.org/10.1007/s10484-009-9077-2 URL http://www.ncbi.nlm.nih.gov/pubmed/19205870

  52. 52.

    Szabo M, Pomazi KD, Radostyan B, Szegletes L, Forstner B (2017) Estimating task difficulty in educational games. In: 7th IEEE International Conference on Cognitive Infocommunications, CogInfoCom 2016-Proceedings. Institute of Electrical and Electronics Engineers Inc., pp 397–402. https://doi.org/10.1109/CogInfoCom.2016.7804582 URL http://ieeexplore.ieee.org/document/7804582/

  53. 53.

    Udupa K, Madanmohan, Bhavanani AB, Vijayalakshmi P, Krishna-murthy N (2003) Effect of pranayam training on cardiac function in normal young volunteers. Indian Journal of Physiology and Pharmacology 47(1):27–33 URL http://www.ncbi.nlm.nih.gov/pubmed/12708121

    Google Scholar 

  54. 54.

    Valenti VE, Guida HL, Frizzo ACF, Cardoso ACV, Vanderlei LCM, de Abreu LC (2012) Auditory stimulation and cardiac autonomic regulation. Clinics 67(8):955–958

    Article  Google Scholar 

  55. 55.

    Weaver L, Wooden T, Grazer J (2019) Validity of apple watch heart rate sensor compared to polar h10 heart rate monitor [Georgia College and State University]. J Student Res

  56. 56.

    Yamamoto S, Iwamoto M, Inoue M, Harada N (2007) Evaluation of the effect of heat exposure on the autonomic nervous system by heart rate variability and urinary catecholamines. Journal of Occupational Health 49(3):199–204. https://doi.org/10.1539/joh.49.199

    Article  Google Scholar 

  57. 57.

    Yu B, Hu J, Funk M, Feijs L (2018) Delight: biofeedback through ambient light for stress intervention and relaxation assistance. Pers Ubiquit Comput 22(4):787–805

    Article  Google Scholar 

  58. 58.

    Yu B, Hu J, Funk M, Liang RH, Xue M, Feijs L (2018) RESonance: lightweight, room-scale audio-visual biofeedback for immersive relaxation training. IEEE Access 6:38336–38347. https://doi.org/10.1109/ACCESS.2018.2853406 URL https://ieeexplore.ieee.org/document/8404138/

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arturo Morales.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 665 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morales, A., Cibrian, F.L., Castro, L.A. et al. An adaptive model to support biofeedback in AmI environments: a case study in breathing training for autism. Pers Ubiquit Comput (2021). https://doi.org/10.1007/s00779-020-01512-1

Download citation

Keywords

  • Biofeedback
  • Adaptive
  • Autism
  • AmI enviroments