Advertisement

An improved nature inspired meta-heuristic algorithm for 1-D bin packing problems

  • Mohamed Abdel-Basset
  • Gunasekaran Manogaran
  • Laila Abdel-Fatah
  • Seyedali Mirjalili
Original Article

Abstract

Bin packing problem (BPP) is a classical combinatorial optimization problem widely used in a wide range of fields. The main aim of this paper is to propose a new variant of whale optimization algorithm named improved Lévy-based whale optimization algorithm (ILWOA). The proposed ILWOA adapts it to search the combinatorial search space of BPP problems. The performance of ILWOA is evaluated through two experiments on benchmarks with varying difficulty and BPP case studies. The experimental results confirm the prosperity of the proposed algorithm in proficiency to find the optimal solution and convergence speed. Further, the obtained results are discussed and analyzed according to the problem size.

Keywords

Bin packing problem Whale optimization algorithm Best fit algorithm Meta-heuristic 

References

  1. 1.
    Papadimitriou CH, Steiglitz K (1998) Combinatorial optimization: algorithms and complexity. Prentice-Hall, Inc., Upper Saddle RiverzbMATHGoogle Scholar
  2. 2.
    Korte B, Vygen J, Korte B, Vygen J (2012) Combinatorial optimization, vol 2. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  3. 3.
    Coffman EG Jr, Garey MR, Johnson DS (1978) An application of bin-packing to multiprocessor scheduling. SIAM J Comput 7(1):1–17MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Perboli G, Gobbato L, Perfetti F (2014) Packing problems in transportation and supply chain: new problems and trends. Procedia Soc Behav Sci 111:672–681CrossRefGoogle Scholar
  5. 5.
    Aggoun A, Rhiat A, Fages F (2016) Panorama of real-life applications in logistics embedding bin packing optimization algorithms, robotics and cloud computing technologies. In Logistics Operations Management (GOL), 2016 3rd International Conference on (pp. 1–4). IEEEGoogle Scholar
  6. 6.
    Martello S (2014) Two-dimensional packing problems in telecommunications. Pesqui Operacional 34(1):31–38CrossRefGoogle Scholar
  7. 7.
    Song W, Xiao Z, Chen Q, Luo H (2014) Adaptive resource provisioning for the cloud using online bin packing. IEEE Trans Comput 63(11):2647–2660MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82CrossRefGoogle Scholar
  9. 9.
    Ho YC, Pepyne DL (2002) Simple explanation of the no free lunch theorem of optimization. Cybern Syst Anal 38(2):292–298MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRefGoogle Scholar
  11. 11.
    Qian B, Wang L, Rong H, Wang WL, Huang DX, Wang X (2008) A hybrid differential evolution method for permutation flow-shop scheduling. Int J Adv Manuf Technol 38(7–8):757–777CrossRefGoogle Scholar
  12. 12.
    Anily S, Bramel J, Simchi-Levi D (1994) Worst-case analysis of heuristics for the bin packing problem with general cost structures. Oper Res 42(2):287–298CrossRefzbMATHGoogle Scholar
  13. 13.
    Eilon S, Christofides N (1971) The loading problem. Manag Sci 17(5):259–268CrossRefzbMATHGoogle Scholar
  14. 14.
    Peeters M, Degraeve Z (2006) Branch-and-price algorithms for the dual bin packing and maximum cardinality bin packing problem. Eur J Oper Res 170(2):416–439MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Johnson DS, Demers A, Ullman JD, Garey MR, Graham RL (1974) Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J Comput 3(4):299–325MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Coffman EG, Galambos G, Martello S, Vigo D (1999) Bin packing approximation algorithms: combinatorial analysis. In Handbook of combinatorial optimization (pp. 151–207). Springer USGoogle Scholar
  17. 17.
    Rhee WT, Talagrand M (1993) On line bin packing with items of random size. Math Oper Res 18(2):438–445MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sensarma D, Sarma SS (2014) A novel graph based algorithm for one dimensional bin packing problem. J Glob Res Comput Sci 5(8):1–4Google Scholar
  19. 19.
    Feigenbaum EA, Feldman J (1995) Computers and thought. MIT Press, Menlo ParkzbMATHGoogle Scholar
  20. 20.
    Romanycia MH, Pelletier FJ (1985) What is a heuristic? Comput Intell 1(1):47–58CrossRefGoogle Scholar
  21. 21.
    Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv (CSUR) 35(3):268–308CrossRefGoogle Scholar
  23. 23.
    Falkenauer E, Delchambre A (1992) A genetic algorithm for bin packing and line balancing. In Robotics and Automation, 1992. Proceedings., 1992 I.E. International Conference on (pp. 1186–1192). IEEEGoogle Scholar
  24. 24.
    Falkenauer E (1996) A hybrid grouping genetic algorithm for bin packing. J Heuristics 2(1):5–30CrossRefGoogle Scholar
  25. 25.
    Sampson JR (1976) Adaptation in natural and artificial systems (John H. Holland). SIAM Rev 18(3):529–530MathSciNetCrossRefGoogle Scholar
  26. 26.
    Layeb A, Boussalia SR (2012) A novel quantum inspired cuckoo search algorithm for bin packing problem. Int J Inf Technol Comput Sci (IJITCS) 4(5):58–67Google Scholar
  27. 27.
    Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In Nature &Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on (pp. 210–214). IEEEGoogle Scholar
  28. 28.
    Zendaoui Z, Layeb A (2016) Adaptive cuckoo search algorithm for the bin packing problem. Modelling and Implementation of Complex Systems Lecture Notes in Networks and Systems, 107–120Google Scholar
  29. 29.
    Liu B, Wang L, Qian B, Jin Y (2008) Hybrid particle swarm optimization for stochastic flow shop scheduling with no-wait constraint, IFAC Proceedings Volumes 41(2). 15855–15860Google Scholar
  30. 30.
    Levine J, Ducatelle F (2004) Ant colony optimization and local search for bin packing and cutting stock problems. J Oper Res Soc 55(7):705–716CrossRefzbMATHGoogle Scholar
  31. 31.
    Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B (Cybernetics) 26(1):29–41CrossRefGoogle Scholar
  32. 32.
    Layeb A, Benayad Z (2014) A novel firefly algorithm based ant colony optimization for solving combinatorial optimization problems. Int J Comput Sci Appl 11(2):19–37Google Scholar
  33. 33.
    Yang XS (2010) Firefly algorithm, levy flights and global optimization. In Research and development in intelligent systems XXVI (pp. 209–218). Springer LondonGoogle Scholar
  34. 34.
    Sonuc E, Sen B, Bayir S (2017) Solving bin packing problem using simulated annealing. Proceedings of 65th ISERD international conference, Mecca, Saudi ArabiaGoogle Scholar
  35. 35.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. John Wiley & Sons, IncGoogle Scholar
  37. 37.
    Kellerer H, Pferschy U, Pisinger D (2004) Introduction to NP-Completeness of knapsack problems (pp. 483-493). Springer Berlin HeidelbergGoogle Scholar
  38. 38.
    Epstein L, Levin A (2008) On bin packing with conflicts. SIAM J Optim 19(3):1270–1298MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Twigg A, Xavier EC (2015) Locality-preserving allocations problems and coloured bin packing. Theor Comput Sci 596:12–22MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Hoyt E (2012) Marine protected areas for whales, dolphins and porpoises: a world handbook for cetacean habitat conservation and planning. Earthscan, Washington, DCGoogle Scholar
  41. 41.
    Whitehead H, Rendell L (2014) The cultural lives of whales and dolphins. University of Chicago PressGoogle Scholar
  42. 42.
    Hain JW, Carter R, Kraus D, Mayo A, Winni E (1982) Feeding behavior of the humpback whale, Megapteranovaeangliae, in the western North Atlantic. Fish Bull 80(2):259–268Google Scholar
  43. 43.
    Goldbogen JA, Friedlaender AS, Calambokidis J, Mckenna MF, Simon M, Nowacek DP (2013) Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63(2):90–100CrossRefGoogle Scholar
  44. 44.
    Yuan X, Dai X, Zhao J, He Q (2014) On a novel multi-swarm fruit fly optimization algorithm and its application. Appl Math Comput 233:260–271MathSciNetzbMATHGoogle Scholar
  45. 45.
    Hyde M, Ochoa G, Curtois T, Vázquez-Rodríguez JA (2009) A hyflex module for the one dimensional bin-packing problem. School of Computer Science, University of Nottingham, Tech. RepGoogle Scholar
  46. 46.
    Fredriksson L (2010) A brief survey of Lévy walks: with applications to probe diffusion. (Bachelor dissertation). http://www.divaportal.org/smash/get/diva2:288755/FULLTEXT02.pdf
  47. 47.
    Mantegna RN (1994) Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Phys Rev E 49(5):4677–4683CrossRefGoogle Scholar
  48. 48.
    Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237MathSciNetCrossRefGoogle Scholar
  49. 49.
    Devaney R (1989) An introduction to chaotic dynamical systems. Addison-Wesley, Reading, p 13046Google Scholar
  50. 50.
    Banzhaf W (1990) The “molecular” traveling salesman. Biol Cybern 64(1):7–14CrossRefzbMATHGoogle Scholar
  51. 51.
    Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer, Berlin Heidelberg New YorkCrossRefzbMATHGoogle Scholar
  52. 52.
    Grefenstette J, Gopal R, Rosmaita B, Van Gucht D (1985) Genetic algorithms for the traveling salesman problem. In Proceedings of the first International Conference on Genetic Algorithms and their Applications (pp. 160–165)Google Scholar
  53. 53.
    EURO Special Interest Group on Cutting and Packing. (n.d.). Retrieved May 05, 2017, from https://paginas.fe.up.pt/~esicup/datasets
  54. 54.
    Gibbons JD, Chakraborti S (2011) Nonparametric statistical inference (pp. 977-979). Springer Berlin Heidelberg, Nonparametric Statistical InferenceGoogle Scholar
  55. 55.
    Scholl A, Klein R, Jürgens C (1997) BISON: a fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Comput Oper Res 24(7):627–645CrossRefzbMATHGoogle Scholar
  56. 56.
    Schwerin P, Wäscher G (1997) The bin-packing problem: a problem generator and some numerical experiments with FFD packing and MTP. Int Trans Oper Res 4(5–6):377–389CrossRefzbMATHGoogle Scholar
  57. 57.
    Baker BS (1985) A new proof for the first-fit decreasing bin-packing algorithm. J Algoritm 6(1):49–70MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Simchi-Levi D (1994) New worst-case results for the bin-packing problem. Nav Res Logist 41(4):579–585MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Manogaran G, Varatharajan R, Lopez D, Kumar PM, Sundarasekar R, Thota C (2017) Vijayakumar V (ed). In: A new architecture of internet of things and big data ecosystem for secured smart healthcare monitoring and alerting. Future generation computer systems.  https://doi.org/10.1016/j.future.2017.10.045
  60. 60.
    Sundarasekar R, Hsu CH (2017) Machine learning based big data processing framework for cancer diagnosis using hidden Markov model and GM clustering. Wireless personal communications, 1–18.  https://doi.org/10.1007/s11277-017-5044-z
  61. 61.
    Manogaran G, Varatharajan R, Priyan MK (2017) Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system. Multimedia tools and applications, 1–21.  https://doi.org/10.1007/s11042-017-5515-y
  62. 62.
    Varatharajan R, Manogaran G, Priyan MK, Balaş VE, Barna C (2017) Visual analysis of geospatial habitat suitability model based on inverse distance weighting with paired comparison analysis. Multimedia tools and applications, 1–21.  https://doi.org/10.1007/s11042-017-4768-9
  63. 63.
    Gandhi UD, Kumar PM, Varatharajan R, Manogaran G, Sundarasekar R, Kadu S (2018) HIoTPOT: Surveillance on Iot devices against recent threats. Wireless personal communications, 1–16.  https://doi.org/10.1007/s11277-018-5307-3

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Mohamed Abdel-Basset
    • 1
  • Gunasekaran Manogaran
    • 2
  • Laila Abdel-Fatah
    • 1
  • Seyedali Mirjalili
    • 3
  1. 1.Faculty of Computers and Informatics, Department of Operations ResearchZagazig UniversityZagazigEgypt
  2. 2.University of CaliforniaDavisUSA
  3. 3.Institute for Integrated and Intelligent SystemsGriffith UniversityBrisbaneAustralia

Personalised recommendations