Skip to main content
Log in

H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

[FeFe]-hydrogenase catalyzes the reversible reduction of protons to H2 at a complex metallocofactor site, the H-cluster. Biosynthesis of this active-site H-cluster requires three maturation enzymes: the radical S-adenosylmethionine enzymes HydE and HydG synthesize the nonprotein ligands, while the GTPase HydF provides a scaffold for assembly of the 2Fe subcluster of the H-cluster ([2Fe]H) prior to its transfer to hydrogenase. To delineate the assembly and delivery steps for the 2Fe precursor cluster coordinated to HydF ([2Fe]F), we have heterologously expressed HydF in the presence of HydE alone (HydFE) or HydG alone (HydFG), and characterized the resulting purified HydFE and HydFG using UV–visible, EPR, and FTIR spectroscopies and biochemical assays. The iron–sulfur clusters on HydF are modified by co-expression with HydE or HydG, as evidenced by the changes in the visible, EPR, and FTIR spectral features. Further, biochemical assays show that HydFE is capable of activating HydAΔEFG to a limited extent (~ 1% of WT) even though the normal source of CO and CN ligands of [2Fe]H (HydG) was absent. Activation assays performed with HydFG, in contrast, exhibit no ability to mature HydAΔEFG. It appears that in the case of HydFE, trace diatomics from the cellular environment are incorporated into a [2Fe]F-like precursor on HydF in the absence of HydG. We conclude that the product of HydE, presumably the dithiomethylamine ligand of [2Fe]H, is absolutely essential to the activation process, while the diatomic products of HydG can be provided from alternate sources.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shepard EM, Mus F, Betz J, Byer A, Duffus BR, Peters JW, Broderick JB (2014) [FeFe]-hydrogenase maturation. Biochemistry 53:4090–4104

    Article  CAS  PubMed  Google Scholar 

  2. Shepard EM, Byer AS, Broderick JB (2017) Iron-sulfur cluster states of the hydrogenase Maturase HydF. Biochemistry 56:4733–4734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19:1038–1052

    Article  CAS  PubMed  Google Scholar 

  4. Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MWW (2015) [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. BBA Mol Cell Res 1853:1350–1369

    CAS  Google Scholar 

  5. Lubitz W, Ogata H, Rudiger O, Reijerse E (2014) Hydrogenases. Chem Rev 114:4081–4148

    Article  CAS  PubMed  Google Scholar 

  6. Mulder DW, Ortillo DO, Gardenghi DJ, Naumov A, Ruebush SS, Szilagyi RK, Huynh BH, Broderick JB, Peters JW (2009) Activation of HydAΔEFG requires a preformed [4Fe-4S] cluster. Biochemistry 48:6240–6248

    Article  CAS  PubMed  Google Scholar 

  7. Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG). Nature 465:248–251

    Article  CAS  PubMed  Google Scholar 

  8. McGlynn SE, Ruebush SS, Naumov A, Nagy LE, Dubini A, King PW, Broderick JB, Posewitz MC, Peters JW (2007) In vitro activation of [FeFe] hydrogenase: new insights into hydrogenase maturation. J Biol Inorg Chem 12:443–447

    Article  CAS  PubMed  Google Scholar 

  9. Broderick JB, Byer AS, Duschene KS, Duffus BR, Betz JN, Shepard EM, Peters JW (2014) H-cluster assembly during the maturation of the [FeFe]-hydrogenase. J Biol Inorg Chem 19:747–757

    Article  CAS  PubMed  Google Scholar 

  10. Byer AS, Shepard EM, Peters JW, Broderick JB (2015) Radical S-adenosyl-l-methionine chemistry in the synthesis of hydrogenase and nitrogenase metal cofactors. J Biol Chem 290:3987–3994

    Article  CAS  PubMed  Google Scholar 

  11. Kuchenreuther JM, Britt RD, Swartz JR (2012) New insights into [FeFe] hydrogenase activation and maturase function. PLoS One 7:e45850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brazzolotto X, Rubach JK, Gaillard J, Gambarelli S, Atta M, Fontecave M (2006) The [Fe-Fe]-hydrogenase maturation protein HydF from Thermotoga maritima is a GTPase with an iron–sulfur cluster. J Biol Chem 281:769–774

    Article  CAS  PubMed  Google Scholar 

  13. McGlynn SE, Shepard EM, Winslow MA, Naumov AV, Duschene KS, Posewitz MC, Broderick WE, Broderick JB, Peters JW (2008) HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis. FEBS Lett 582:2183–2187

    Article  CAS  PubMed  Google Scholar 

  14. Czech I, Silakov A, Lubitz W, Happe T (2010) The [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN-ligated cluster. FEBS Lett 584:638–642

    Article  CAS  PubMed  Google Scholar 

  15. Shepard EM, McGlynn SE, Bueling AL, Grady-Smith C, George SJ, Winslow MA, Cramer SP, Peters JW, Broderick JB (2010) Synthesis of the 2Fe-subcluster of the [FeFe]-hydrogenase H-cluster on the HydF scaffold. Proc Natl Acad Sci USA 107:10448–10453

    Article  PubMed  Google Scholar 

  16. Scott AG, Szilagyi RK, Mulder DW, Ratzloff MW, Byer AS, King PW, Broderick WE, Shepard EM, Broderick JB (2018) Compositional and structural insights into the nature of the H-cluster precursor on HydF. Dalton Trans 47:9521–9535

    Article  CAS  PubMed  Google Scholar 

  17. Németh B, Esmieu C, Redman HJ, Berggren G (2019) Monitoring H-cluster assembly using a synthetic HydF protein. Dalton Trans 48:5978–5986

    Article  PubMed  PubMed Central  Google Scholar 

  18. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499:66–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720

    Article  CAS  PubMed  Google Scholar 

  20. Pilet E, Nicolet Y, Mathevon C, Douki T, Fontecilla-Camps JC, Fontecave M (2009) The role of the maturase HydG in [FeFe]-hydrogenase active site synthesis and assembly. FEBS Lett 583:506–511

    Article  CAS  PubMed  Google Scholar 

  21. Shepard EM, Duffus BR, McGlynn SE, Challand MR, Swanson KD, Roach PL, Peters JW, Broderick JB (2010) [FeFe]-hydrogenase maturation: HydG-catalyzed synthesis of carbon monoxide. J Am Chem Soc 132:9247–9249

    Article  CAS  PubMed  Google Scholar 

  22. Driesener RC, Duffus BR, Shepard EM, Bruzas IR, Duschene KS, Coleman NJ-R, Marrison APG, Salvadori E, Kay CWM, Peters JW, Broderick JB, Roach PL (2013) Biochemical and kinetic characterization of radical S-adenosylmethionine enzyme HydG. Biochemistry 52:8696–8707

    Article  CAS  PubMed  Google Scholar 

  23. Duffus BR, Ghose S, Peters JW, Broderick JB (2014) Reversible H atom abstraction catalyzed by the radical S-adenosylmethionine enzyme HydG. J Am Chem Soc 136:13086–13089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuchenreuther JM, Myers WK, Suess DLM, Stich TA, Pelmenschikov V, Shiigi SA, Cramer SP, Swartz JR, Britt RD, George SJ (2014) The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster. Science 343:424–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pagnier A, Martin L, Zeppieri L, Nicolet Y, Fontecilla-Camps JC (2016) CO and CN-syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events. Proc Natl Acad Sci USA 113:104–109

    Article  CAS  PubMed  Google Scholar 

  26. Driesener RC, Challand MR, McGlynn SE, Shepard EM, Boyd ES, Broderick JB, Peters JW, Roach PL (2010) [FeFe]-hydrogenase cyanide ligands derived from S-adenosylmethionine-dependent cleavage of tyrosine. Angew Chem Int Ed Engl 49:1687–1690

    Article  CAS  PubMed  Google Scholar 

  27. Kuchenreuther JM, George SJ, Grady-Smith CS, Cramer SP, Swartz JR (2011) Cell-free H-cluster synthesis and [FeFe] hydrogenase activation: all five CO and CN-ligands derive from tyrosine. PLoS One 6:e20346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Betz JN, Boswell NW, Fugate CJ, Holliday GL, Akiva E, Scott AG, Babbitt PC, Peters JW, Shepard EM, Broderick JB (2015) [FeFe]-hydrogenase maturation: insights into the role HydE plays in dithiomethylamine biosynthesis. Biochemistry 54:1807–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rohac R, Amara P, Benjdia A, Martin L, Ruffié P, Favier A, Berteau O, Mouesca J-M, Fontecilla-Camps JC, Nicolet Y (2016) Carbon–sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE. Nat Chem 8:491–500

    Article  CAS  PubMed  Google Scholar 

  30. Czech I, Stripp S, Sanganas O, Leidel N, Happe T, Haumann M (2011) The [FeFe]-hydrogenase maturation protein HydF contains a H-cluster like [4Fe4S]–2Fe site. FEBS Lett 585:225–230

    Article  CAS  PubMed  Google Scholar 

  31. Shepard EM, Byer AS, Betz JN, Peters JW, Broderick JB (2016) A redox active [2Fe-2S] cluster on the hydrogenase maturase HydF. Biochemistry 55:3514–3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shepard EM, Byer AS, Aggarwal P, Betz JN, Scott AG, Shisler KA, Usselman RJ, Eaton GR, Eaton SS, Broderick JB (2017) Electron spin relaxation and biochemical characterization of the hydrogenase maturase HydF: insights into [2Fe-2S] and [4Fe-4S] cluster communication and hydrogenase activation. Biochemistry 56:3234–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Res 178:42–55

    Article  CAS  Google Scholar 

  34. Rupp H, Rao KK, Hall DO, Cammack R (1978) Electron spin relaxation of iron–sulphur proteins studied by microwave power saturation. Biochim Biophys Acta 537:255–269

    Article  CAS  PubMed  Google Scholar 

  35. Lemon BJ, Peters JW (1999) Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38:12969–12973

    Article  CAS  PubMed  Google Scholar 

  36. Quillin ML, Arduini RM, Olson JS, Phillips GNJ (1993) High-resolution crystal structures of distal histidine mutants of sperm whale myoglobin. J Mol Biol 234:140–155

    Article  CAS  PubMed  Google Scholar 

  37. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    Article  CAS  PubMed  Google Scholar 

  38. Galazzo L, Maso L, De Rosa E, Bortolus M, Doni D, Acquasaliente L, De Filippis V, Costantini P, Carbonera D (2017) Identifying conformational changes with site-directed spin labeling reveals that the GTPase domain of HydF is a molecular switch. Sci Rep 7:1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vallese F, Berto P, Ruzzene M, Cendron L, Sarno S, De Rosa E, Giacometti GM, Costantini P (2012) Biochemical analysis of the interactions between the proteins involved in the [FeFe]-hydrogenase maturation process. J Biol Chem 287:36544–36555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bortolus M, Costantini P, Doni D, Carbonera D (2018) Overview of the maturation machinery of the H-cluster of [FeFe]-hydrogenases with a focus on HydF. Int J Mol Sci 19:3118

    Article  CAS  PubMed Central  Google Scholar 

  41. Peters JW, Szilagyi RK, Naumov A, Douglas T (2006) A radical solution for the biosynthesis of the H-cluster of hydrogenase. FEBS Lett 580:363–367

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the U.S. Department of Energy, Office of Basic Energy Sciences (DE-SC0005404 to J.B.B. and E.M.S.), for supporting all experimental work other than the FTIR spectroscopy. FTIR spectroscopy was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, and under U.S. Department of Energy Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan B. Broderick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byer, A.S., Shepard, E.M., Ratzloff, M.W. et al. H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG. J Biol Inorg Chem 24, 783–792 (2019). https://doi.org/10.1007/s00775-019-01709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01709-7

Keywords

Navigation