Skip to main content
Log in

The conserved CDC motif in the yeast iron regulator Aft2 mediates iron–sulfur cluster exchange and protein–protein interactions with Grx3 and Bol2

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The Saccharomyces cerevisiae transcriptional activator Aft1 and its paralog Aft2 respond to iron deficiency by upregulating expression of proteins required for iron uptake at the plasma membrane, vacuolar iron transport, and mitochondrial iron metabolism, with the net result of mobilizing iron from extracellular sources and intracellular stores. Conversely, when iron levels are sufficient, Aft1 and Aft2 interact with the cytosolic glutaredoxins Grx3 and Grx4 and the BolA protein Bol2, which promote Aft1/2 dissociation from DNA and subsequent export from the nucleus. Previous studies unveiled the molecular mechanism for iron-dependent inhibition of Aft1/2 activity, demonstrating that the [2Fe–2S]-bridged Grx3–Bol2 heterodimer transfers a cluster to Aft2, driving Aft2 dimerization and dissociation from DNA. Here, we provide further insight into the regulation mechanism by investigating the roles of conserved cysteines in Aft2 in iron–sulfur cluster binding and interaction with [2Fe–2S]–Grx3–Bol2. Using size exclusion chromatography and circular dichroism spectroscopy, these studies reveal that both cysteines in the conserved Aft2 Cys-Asp-Cys motif are essential for Aft2 dimerization via [2Fe–2S] cluster binding, while only one cysteine is required for interaction with the [2Fe–2S]–Grx3–Bol2 complex. Taken together, these results provide novel insight into the molecular details of iron–sulfur cluster transfer from Grx3–Bol2 to Aft2 which likely occurs through a ligand exchange mechanism. Loss of either cysteine in the Aft2 iron–sulfur binding site may disrupt this ligand-exchange process leading to the isolation of a trapped Aft2–Grx3–Bol2 intermediate, while the replacement of both cysteines abrogates both the iron–sulfur cluster exchange and the protein–protein interactions between Aft2 and Grx3–Bol2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

CDC:

Cys–Asp–Cys

Cys:

Cysteine

Fe–S:

Iron–sulfur

Grx:

Glutaredoxin

GSH:

Glutathione

IPTG:

Isopropyl β-d-thiogalactoside

LB:

Luria–Bertani medium

PMSF:

Phenylmethanesulfonyl fluoride

SEC:

Size exclusion chromatography

TCEP:

Tris[2-carboxyethyl] phosphine

WT:

Wild type

References

  1. Blaiseau PL, Lesuisse E, Camadro JM (2001) J Biol Chem 276:34221–34226

    Article  CAS  PubMed  Google Scholar 

  2. Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR (2001) Proc Natl Acad Sci U S A 98:14322–14327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yamaguchi-Iwai Y, Dancis A, Klausner RD (1995) EMBO J 14:1231–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD (1996) EMBO J 15:3377–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Courel M, Lallet S, Camadro JM, Blaiseau PL (2005) Mol Cell Biol 25:6760–6771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rutherford JC, Jaron S, Winge DR (2003) J Biol Chem 278:27636–27643

    Article  CAS  PubMed  Google Scholar 

  7. Yamaguchi-Iwai Y, Ueta R, Fukunaka A, Sasaki R (2002) J Biol Chem 277:18914–18918

    Article  CAS  PubMed  Google Scholar 

  8. Rutherford JC, Ojeda L, Balk J, Mühlenhoff U, Lill R, Winge DR (2005) J Biol Chem 280:10135–10140

    Article  CAS  PubMed  Google Scholar 

  9. Kumanovics A, Chen OS, Li L, Bagley D, Adkins EM, Lin H, Dingra NN, Outten CE, Keller G, Winge D, Ward DM, Kaplan J (2008) J Biol Chem 283:10276–10286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lesuisse E, Knight SA, Courel M, Santos R, Camadro JM, Dancis A (2005) Genetics 169:107–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pujol-Carrion N, Belli G, Herrero E, Nogues A, de la Torre-Ruiz MA (2006) J Cell Sci 119:4554–4564

    Article  CAS  PubMed  Google Scholar 

  12. Mühlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, Zhang Y, Stubbe J, Pierrel F, Herrero E, Lillig CH, Lill R (2010) Cell Metab 12:373–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y (2012) Mol Cell Biol 32:4998–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poor CB, Wegner SV, Li H, Dlouhy AC, Schuermann JP, Sanishvili R, Hinshaw JR, Riggs-Gelasco PJ, Outten CE, He C (2014) Proc Natl Acad Sci USA 111:4043–4048

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Mapolelo DT, Dingra NN, Keller G, Riggs-Gelasco PJ, Winge DR, Johnson MK, Outten CE (2011) J Biol Chem 286:867–876

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS, Hoffman BM, Riggs-Gelasco PJ, Huynh BH, Johnson MK, Outten CE (2009) Biochemistry 48:9569–9581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li H, Outten CE (2012) Biochemistry 51:4377–4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Picciocchi A, Saguez C, Boussac A, Cassier-Chauvat C, Chauvat F (2007) Biochemistry 46:15018–15026

    Article  CAS  PubMed  Google Scholar 

  19. Ojeda L, Keller G, Mühlenhoff U, Rutherford JC, Lill R, Winge DR (2006) J Biol Chem 281:17661–17669

    Article  CAS  PubMed  Google Scholar 

  20. Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y (2007) Mol Biol Cell 18:2980–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant R35 GM118164 to C.E.O. from the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caryn E. Outten.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Outten, C.E. The conserved CDC motif in the yeast iron regulator Aft2 mediates iron–sulfur cluster exchange and protein–protein interactions with Grx3 and Bol2. J Biol Inorg Chem 24, 809–815 (2019). https://doi.org/10.1007/s00775-019-01705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01705-x

Keywords

Navigation