Skip to main content
Log in

Deconvolution of reduction potentials of formate dehydrogenase from Cupriavidus necator

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The formate dehydrogenase enzyme from Cupriavidus necator (FdsABG) carries out the two-electron oxidation of formate to CO2, but is also capable of reducing CO2 back to formate, a potential biofuel. FdsABG is a heterotrimeric enzyme that performs this transformation using nine redox-active cofactors: a bis(molybdopterin guanine dinucleotide) (bis-MGD) at the active site coupled to seven iron–sulfur clusters, and one equivalent of flavin mononucleotide (FMN). To better understand the pathway of electron flow in FdsABG, the reduction potentials of the various cofactors were examined through direct electrochemistry. Given the redundancy of cofactors, a truncated form of the FdsA subunit was developed that possesses only the bis-MGD active site and a singular [4Fe–4S] cluster. Electrochemical characterization of FdsABG compared to truncated FdsA shows that the measured reduction potentials are remarkably similar despite the truncation with two observable features at − 265 mV and − 455 mV vs SHE, indicating that the voltammetry of the truncated enzyme is representative of the reduction potentials of the intact heterotrimer. By producing truncated FdsA without the necessary maturation factors required for bis-MGD insertion, a form of the truncated FdsA that possesses only the [4Fe–4S] was produced, which gives a single voltammetric feature at − 525 mV, allowing the contributions of the molybdenum cofactor to be associated with the observed feature at − 265 mV. This method allowed for the deconvolution of reduction potentials for an enzyme with highly complex cofactor content to know more about the thermodynamic landscape of catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Proc Natl Acad Sci USA 106:1704

    Article  PubMed  Google Scholar 

  2. Müller J, MacEachran D, Burd H, Sathitsuksanoh N, Bi C, Yeh Y-C, Lee TS, Hillson NJ, Chhabra SR, Singer SW, Beller HR (2013) Appl Environ Microbiol 79:4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hille R, Hall J, Basu P (2014) Chem Rev 114:3963–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Niks D, Duvvuru J, Escalona M, Hille R (2016) J Biol Chem 291:1162–1174

    Article  CAS  PubMed  Google Scholar 

  5. Yu X, Niks D, Mulchandani A, Hille R (2017) J Biol Chem 292:16872–16879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oh J-I, Bowien B (1998) J Biol Chem 273:26349–26360

    Article  CAS  PubMed  Google Scholar 

  7. Hartmann T, Leimkühler S (2013) FEBS J 280:6083–6096

    Article  CAS  PubMed  Google Scholar 

  8. Thomé R, Gust A, Toci R, Mendel R, Bittner F, Magalon A, Walburger A (2012) J Biol Chem 287:4671–4678

    Article  CAS  PubMed  Google Scholar 

  9. Akhtar MK, Jones PR (2008) Appl Microbiol Biotechnol 78:853–862

    Article  CAS  PubMed  Google Scholar 

  10. Friedebold J, Mayer F, Bill E, Trautwein AX, Bowien B (1995) Biol Chem Hoppe-Seyler 376:561–568

    Article  CAS  PubMed  Google Scholar 

  11. Carter P (1971) Anal Biochem 40:450–458

    Article  CAS  PubMed  Google Scholar 

  12. McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F (2014) Proc Natl Acad Sci 111:E3948–E3956

    Article  CAS  PubMed  Google Scholar 

  13. Ayikpoe R, Ngendahimana T, Langton M, Bonitatibus S, Walker LM, Eaton SS, Eaton GR, Pandelia M-E, Elliott SJ, Latham JA (2019) Biochemistry 58:940–950. https://doi.org/10.1021/acs.biochem.8b01082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walker LM, Kincannon WM, Bandarian V, Elliott SJ (2018) Biochemistry 57:6050–6053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F (2014) Proc Natl Acad Sci USA 111:E3948

    Article  CAS  PubMed  Google Scholar 

  16. Fourmond V (2016) Anal Chem 88:5050–5052

    Article  CAS  PubMed  Google Scholar 

  17. Bassegoda A, Madden C, Wakerley DW, Reisner E, Hirst J (2014) J Am Chem Soc 136:15473–15476

    Article  CAS  PubMed  Google Scholar 

  18. Reda T, Plugge CM, Abram NJ, Hirst J (2008) Proc Natl Acad Sci USA 105:10654

    Article  PubMed  Google Scholar 

  19. Schlindwein C, Giordano G, Santini CL, Mandrand MA (1990) J Bacteriol 172:6112–6121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adamson H, Simonov AN, Kierzek M, Rothery RA, Weiner JH, Bond AM, Parkin A (2015) Proc Natl Acad Sci USA 112:14506

    Article  CAS  PubMed  Google Scholar 

  21. McGrath AP, Laming EL, Garcia GPC, Kvansakul M, Guss JM, Trewhella J, Calmes B, Bernhardt PV, Hanson GR, Kappler U, Maher MJ (2015) eLife 4:e09066

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rothery RA, Magalon A, Giordano G, Guigliarelli B, Blasco F, Weiner JH (1998) J Biol Chem 273:7462–7469

    Article  CAS  PubMed  Google Scholar 

  23. Wu S-Y, Rothery RA, Weiner JH (2015) J Biol Chem 290:25164–25173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heering HA, Hagen WR (1996) J Electroanal Chem 404:249–260

    Article  Google Scholar 

  25. Baymann F, Schoepp-Cothenet B, Duval S, Guiral M, Brugna M, Baffert C, Russell MJ, Nitschke W (2018) Frontiers in Microbiology 9:1357

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lim ZH, Chng ELK, Hui Y, Webster RD (2013) J Phys Chem B 117:2396–2402

    Article  CAS  PubMed  Google Scholar 

  27. Tan SLJ, Novianti ML, Webster RD (2015) J Phys Chem B 119:14053–14064

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy, Office of Sciences, Basic Energy Sciences (BES) program, via contract BES DE-SC0012598 (to SJE) and DE-SC0010666 (to RH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean J. Elliott.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, L.M., Li, B., Niks, D. et al. Deconvolution of reduction potentials of formate dehydrogenase from Cupriavidus necator. J Biol Inorg Chem 24, 889–898 (2019). https://doi.org/10.1007/s00775-019-01701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01701-1

Keywords

Navigation