Skip to main content
Log in

Understanding the role of electron donors in the reaction catalyzed by Tsrm, a cobalamin-dependent radical S-adenosylmethionine methylase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The cobalamin-dependent radical S-adenosylmethionine (SAM) enzyme TsrM catalyzes the methylation of C2 of l-tryptophan to form 2-methyltryptophan during the biosynthesis of thiostrepton A. Although TsrM is a member of the radical SAM superfamily, unlike all other annotated members, it does not catalyze a reductive cleavage of SAM to a 5′-deoxyadenosyl 5′-radical intermediate. In fact, it has been proposed that TsrM catalyzes its reaction through two polar nucleophilic displacements, with its cobalamin cofactor cycling directly between methylcobalamin (MeCbl) and cob(I)alamin. Nevertheless, the enzyme has been stated to require the action of a reductant, which can be satisfied by dithiothreitol. By contrast, all other annotated RS enzymes require a reductant that exhibits a much lower reduction potential, which is necessary for the reductive cleavage of SAM. Herein, we show that TsrM can catalyze multiple turnovers in the absence of any reducing agent, but only when it is pre-loaded with MeCbl. When hydroxocobalamin (OHCbl) or cob(II)alamin is bound to TsrM, a reductant is required to convert it to cob(I)alamin, which can acquire a methyl group directly from SAM. Our studies suggest that TsrM uses an external reductant to prime its reaction by converting bound OHCbl or cob(II)alamin to MeCbl, and to regenerate the MeCbl form of the cofactor upon adventitious oxidation of the cob(I)alamin intermediate to cob(II)alamin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5′-dA:

5′-deoxyadenosyl radical

β:

Mercaptoethanol

DTT:

Dithiothreitol

flr:

Flavodoxin reductase

flv:

Flavodoxin

LC–MS/MS:

Liquid chromatography tandem mass spectrometry

MeCbl:

Methylcobalamin

MetH:

Methionine synthase

MeTrp:

2-methyltryptophan

RS:

Radical S-adenosylmethionine

SAM:

S-adenosylmethionine

TCEP:

Tris (2-carboxyethyl) phosphine

Trp:

Tryptophan

References

  1. Li C, Kelly WL (2010) Recent advances in thiopeptide antibiotic biosynthesis. Nat Prod Rep 27:153–164

    Article  CAS  PubMed  Google Scholar 

  2. Pierre S, Guillot A, Benjdia A, Sandström C, Langella P, Berteau O (2012) Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Nat Chem Biol 8:957–959

    Article  CAS  PubMed  Google Scholar 

  3. Blaszczyk AJ, Silakov A, Zhang B, Maiocco SJ, Lanz ND, Kelly WL, Elliott SJ, Krebs C, Booker SJ (2016) Spectroscopic and electrochemical characterization of the iron-sulfur and cobalamin cofactors of TsrM, an unusual radical S-adenosylmethionine methylase. J Am Chem Soc 138:3416–3426

    Article  CAS  PubMed  Google Scholar 

  4. Blaszczyk AJ, Wang B, Silakov A, Ho JV, Booker SJ (2017) Efficient methylation of C2 in l-tryptophan by the cobalamin-dependent radical S-adenosylmethionine methylase TsrM requires an unmodified N1 amine. J Biol Chem 292:15456–15467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Banerjee RV, Matthews RG (1990) Cobalamin-dependent methionine synthase. FASEB J 4:1450–1459

    Article  CAS  PubMed  Google Scholar 

  6. Drummond JT, Huang S, Blumenthal RM, Matthews RG (1993) Assignment of enzymatic function to specific protein regions of cobalamin-dependent methionine synthase from Escherichia coli. Biochemistry 32:9290–9295

    Article  CAS  PubMed  Google Scholar 

  7. Fujii K, Galivan JH, Huennekens FM (1977) Activation of methionine synthase: further characterization of flavoprotein system. Arch Biochem Biophys 178:662–670

    Article  CAS  PubMed  Google Scholar 

  8. Arcinas AJ, Maiocco SJ, Elliott SJ, Silakov A, Booker SJ (2019) Ferredoxins as interchangeable redox components in support of MiaB, a radical S-adenosylmethionine methylthiotransferase. Protein Sci 28:267–282

    Article  CAS  PubMed  Google Scholar 

  9. Maiocco SJ, Arcinas AJ, Booker SJ, Elliott SJ (2019) Parsing redox potentials of five ferredoxins found within Thermotoga maritima. Protein Sci 28:257–266

    Article  CAS  PubMed  Google Scholar 

  10. Iwig DF, Booker SJ (2004) Insight into the polar reactivity of the onium chalcogen analogues of S-adenosyl-l-methionine. Biochemistry 43:13496–13509

    Article  CAS  PubMed  Google Scholar 

  11. Cicchillo RM, Iwig DF, Jones AD, Nesbitt NM, Baleanu-Gogonea C, Souder MG, Tu L, Booker SJ (2004) Lipoyl synthase requires two equivalents of S-adenosyl-l-methionine to synthesize one equivalent of lipoic acid. Biochemistry 43:6378–6386

    Article  CAS  PubMed  Google Scholar 

  12. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  13. Lanz N, Blaszczyk AJ, McCarthy E, Wang B, Wang R, Jones B, Booker SJ (2018) Enhanced solubilization of class B radical S-adenosylmethionine methylases by improved cobalamin uptake in Escherichia coli. Biochemistry 57(9):1475–1490

    Article  CAS  PubMed  Google Scholar 

  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  15. Ljungdahl LG, LeGall J, Lee JP (1973) Isolation of a protein containing tightly bound 5-methoxybenzimidazolylcobamide (factor 3m) from Clostridium thermoaceticum. Biochemistry 12:1802–1808

    Article  CAS  PubMed  Google Scholar 

  16. Blaszczyk AJ, Wang RX, Booker SJ (2017) TsrM as a model for purifying and characterizing cobalamin-dependent radical S-adenosylmethionine methylases. Methods Enzymol 595:303–329

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jenkins CM, Waterman MR (1998) NADPH-flavodoxin reductase and flavodoxin from Escherichia coli: characteristics as a soluble microsomal P450 reductase. Biochemistry 37:6106–6113

    Article  CAS  PubMed  Google Scholar 

  18. Hoover DM, Jarrett JT, Sands RH, Dunham WR, Ludwig ML, Matthews RG (1997) Interaction of Escherichia coli cobalamin-dependent methionine synthase and its physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation from the cobalamin cofactor. Biochemistry 36:127–138

    Article  CAS  PubMed  Google Scholar 

  19. Pullela PK, Chiku T, Carvan MJ III, Sem DS (2006) Fluorescence-based detection of thiols in vitro and in vivo using dithiol probes. Anal Biochem 352:265–273

    Article  CAS  PubMed  Google Scholar 

  20. Mickey B, Howard J (1995) Rigidity of microtubules is increased by stabilizing agents. J Cell Biol 130:909–917

    Article  CAS  PubMed  Google Scholar 

  21. Cleland WW (1964) Dithiothretol, a new protective reagent for SH groups. Biochemistry 3:480–482

    Article  CAS  PubMed  Google Scholar 

  22. Creutz C (1981) Complexities of ascorbate as a reducing agent. Inorg Chem 20:4449–4452

    Article  CAS  Google Scholar 

  23. Otvos JD, Krum DP, Masters BS (1986) Localization of the free radical on the flavin mononucleotide of the air-stable semiquinone state of NADPH-cytochrome P-450 reductase using 31P NMR spectroscopy. Biochemistry 25:7220–7228

    Article  CAS  PubMed  Google Scholar 

  24. Jenkins CM, Waterman MR (1994) Flavodoxin and NADPH-flavodoxin reductase from Escherichia coli support bovine cytochrome P450c17 hydroxylase activities. J Biol Chem 269:27401–27408

    CAS  PubMed  Google Scholar 

  25. Mayhew SG (1978) The redox potential of dithionite and SO-2 from equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase. Eur J Biochem 85:535–547

    Article  CAS  PubMed  Google Scholar 

  26. Mayhew SG, Foust GP, Massey V (1969) Oxidation-reduction properties of flavodoxin from Peptostreptococcus elsdenii. J Biol Chem 244:803–810

    CAS  PubMed  Google Scholar 

  27. Jarrett JT, Goulding CW, Fluhr K, Huang S, Matthews RG (1997) Purification and assay of cobalamin-dependent methionine synthase from Escherichia coli. Methods Enzymol 281:196–213

    Article  CAS  PubMed  Google Scholar 

  28. Menon S, Ragsdale SW (1998) Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron–sulfur protein from Clostridium thermoaceticum during acetate biosynthesis. Biochemistry 37:5689–5698

    Article  CAS  PubMed  Google Scholar 

  29. Menon S, Ragsdale SW (1999) The role of an iron-sulfur cluster in an enzymatic methylation reaction. Methylation of CO dehydrogenase/acetyl-CoA synthase by the methylated corrinoid iron-sulfur protein. J Biol Chem 274:11513–11518

    Article  CAS  PubMed  Google Scholar 

  30. Salnikov DS, Silaghi-Dumitrescu R, Makarov SV, van Eldik R, Boss GR (2011) Cobalamin reduction by dithionite. Evidence for the formation of a six-coordinate cobalamin(II) complex. Dalton Trans 40:9831–9834

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported an NIH grant (GM-122595) and the Eberly Family Distinguished Chair in Science to S. J. B, who is also an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Squire J. Booker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaszczyk, A.J., Knox, H.L. & Booker, S.J. Understanding the role of electron donors in the reaction catalyzed by Tsrm, a cobalamin-dependent radical S-adenosylmethionine methylase. J Biol Inorg Chem 24, 831–839 (2019). https://doi.org/10.1007/s00775-019-01689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01689-8

Keywords

Navigation