Skip to main content

Advertisement

Log in

Rapeseed flower pollen bio-green synthesized silver nanoparticles: a promising antioxidant, anticancer and antiangiogenic compound

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Based on recent researches, bio synthesized silver nanoparticles (Ag-NPs) seem to have the potential in declining angiogenesis and oxidative stress. In the current study, rapeseed flower pollen (RFP) water extract was triggered to synthesize RFP–silver nanoparticles (RFP/Ag-NPs). Moreover, antioxidant, antiangiogenesis and cytotoxicity of the RFP/Ag-NPs against MDA-MB-231, MCF7 and carcinoma cell lines and normal human skin fibroblast HDF were compared. Results indicated that RFP/Ag-NPs have a peak at 430 nm, spherical shape and an average size of 24 nm. According to the results of FTIR, rapeseed pollen capped Ag-NPs. RFP/Ag-NPs have cytotoxicity on MDA-MB-231 and MCF7 cells and decrease cancerous cell viability (IC50 = 3 µg/ml and 2 µg/ml, respectively) in a dose- and time-dependent manner. The morphological data showed that the RFP/Ag-NPs increase the percentage of apoptotic cells compared to the control group and normal cells (human skin fibroblast cells). The apoptotic morphological change was also confirmed with a flow cytometric analysis. RFP/ Ag-NPs’ antioxidant activity was evaluated by measuring their ability to scavenge ABTS and DPPH free radicals. The IC50 values were determined at 800 and 830 μg/ml for ABTS and DPPH tests, respectively. According to the results, green-synthesized RFP/Ag-NPs as a safe efficient apoptosis inducer and strong antioxidant compound have the potential to suppress breast cancer carcinogenesis by VEGF down-regulatiion and thus sensitizing them against apoptosis. However, further researches are required to clarify RFP/Ag-NPs’ cell specificity and therapeutic doses in in vivo conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci 90(17):7915–7922

    Article  CAS  PubMed  Google Scholar 

  2. Valko M et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  PubMed  Google Scholar 

  3. Sharma CK et al (2015) Green synthesis of different nanoparticles and their potential applications in different fields—a critical review. Int J Pharm Bio Sci 6(3):555–567

    CAS  Google Scholar 

  4. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    Article  CAS  Google Scholar 

  5. Gejo G, Kuruvilla J, Boudenne A, Sabu T (2010) Recent advances in green composites. Key Eng Mater 425:107–166

    Article  CAS  Google Scholar 

  6. Zhang X-F et al (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534

    Article  CAS  PubMed Central  Google Scholar 

  7. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  8. Shah M et al (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11):7278–7308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mandal D et al (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492

    Article  CAS  PubMed  Google Scholar 

  10. Hong P et al (2015) Green synthesis and stability evaluation of ag nanoparticles using bamboo hemicellulose. BioResources 11(1):385–399

    Article  CAS  Google Scholar 

  11. Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ital J Agron 7(3):37

    Article  Google Scholar 

  12. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (aнглoязычнaя вepcия) 6(1):35–44

    Article  CAS  Google Scholar 

  13. Kannan R, Stirk W, Van Staden J (2013) Synthesis of silver nanoparticles using the seaweed Codium capitatum PC Silva (Chlorophyceae). S Afr J Bot 86:1–4

    Article  CAS  Google Scholar 

  14. Fu D-H et al (2016) Research progress and strategies for multifunctional rapeseed: a case study of China. J Integr Agric 15(8):1673–1684

    Article  Google Scholar 

  15. Rajan R et al (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crops Prod 70:356–373

    Article  CAS  Google Scholar 

  16. Ovais M et al (2018) Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 102(16):6799–6814

    Article  CAS  PubMed  Google Scholar 

  17. Gasser CA et al (2014) Advanced enzymatic elimination of phenolic contaminants in wastewater: a nano approach at field scale. Appl Microbiol Biotechnol 98(7):3305–3316

    Article  CAS  PubMed  Google Scholar 

  18. Koyyati R et al (2014) Antibacterial activity of silver nanoparticles synthesized using Amaranthus viridis twig extract. Int J Res Pharm Sci 5(1):32–39

    Google Scholar 

  19. Shankar S, Rhim J-W (2015) Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr Polym 130:353–363

    Article  CAS  Google Scholar 

  20. Thombre R et al (2013) Synthesis of silver nanoparticles and its cytotoxic effect against THP-1 cancer cell line. Int J Pharm Bio Sci 4:184–192

    CAS  Google Scholar 

  21. Okafor F et al (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health 10(10):5221–5238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Namvar F et al (2016) Nanosized silver–palm pollen nanocomposite, green synthesis, characterization and antimicrobial activity. Res Chem Intermed 42(3):1571–1581

    Article  CAS  Google Scholar 

  23. Shameli K et al (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6(1):73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tippayawat P et al (2016) Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ 4:e2589

    Article  PubMed  PubMed Central  Google Scholar 

  25. Madhanraj R, Eyini M, Balaji P (2017) Antioxidant assay of gold and silver nanoparticles from edible basidiomycetes mushroom fungi. Free Radic Antioxid 7(2):137–142

    Article  CAS  Google Scholar 

  26. Saddick S, Afifi M, Zinada OAA (2017) Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 24(7):1672–1678

    Article  CAS  PubMed  Google Scholar 

  27. Sulaiman GM et al (2013) Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac J Trop Biomed 3(1):58–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alon T et al (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1(10):1024

    Article  CAS  PubMed  Google Scholar 

  29. Benjamin LE, Keshet E (1997) Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci 94(16):8761–8766

    Article  CAS  PubMed  Google Scholar 

  30. Gerber H-P, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273(21):13313–13316

    Article  CAS  PubMed  Google Scholar 

  31. Biroccio A et al (2000) Bcl-2 overexpression and hypoxia synergistically act to modulate vascular endothelial growth factor expression and in vivo angiogenesis in a breast carcinoma line. FASEB J 14(5):652–660

    Article  CAS  PubMed  Google Scholar 

  32. Fernandez A et al (2001) Angiogenic potential of prostate carcinoma cells overexpressing bcl-2. J Natl Cancer Inst 93(3):208–213

    Article  CAS  PubMed  Google Scholar 

  33. Iervolino A et al (2002) Bcl-2 overexpression in human melanoma cells increases angiogenesis through VEGF mRNA stabilization and HIF-1-mediated transcriptional activity. FASEB J 16(11):1453–1455

    Article  CAS  PubMed  Google Scholar 

  34. Le Gouill S et al (2004) VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 104(9):2886–2892

    Article  CAS  PubMed  Google Scholar 

  35. Cuconati A et al (2003) DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 17(23):2922–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Willis SN et al (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19(11):1294–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Islamic Azad University, Mashhad, Iran, which is appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Homayouni Tabrizi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajebi, S., Tabrizi, M.H., Moghaddam, M.N. et al. Rapeseed flower pollen bio-green synthesized silver nanoparticles: a promising antioxidant, anticancer and antiangiogenic compound. J Biol Inorg Chem 24, 395–404 (2019). https://doi.org/10.1007/s00775-019-01655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01655-4

Keywords

Navigation