Skip to main content
Log in

Reductive nitrosylation of ferric microperoxidase-11

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c, which is considered as a heme-protein model. Here, the reductive nitrosylation of ferric MP11 (MP11(III)) under anaerobic conditions has been investigated between pH 7.4 and 9.2, at T = 20.0 °C. At pH ≤ 7.7, NO binds reversibly to MP11(III) leading to the formation of the MP11(III)–NO complex. However, between pH 8.2 and 9.2, the addition of NO to MP11(III) leads to the formation of ferrous nitrosylated MP11(II) (MP11(II)–NO). In fact, the transient MP11{FeNO}6 species is converted to ferrous deoxygenated MP11 (MP11(II)) by OH- and H2O-based catalysis, which represents the rate-limiting step of the whole reaction. Then, MP11(II) binds NO very rapidly leading to MP11(II)–NO formation. Over the whole pH range explored, the apparent values of kon, koff, and K (= koff/kon) for MP11(III)(–NO) (de)nitrosylation are essentially pH independent, ranging between 5.8 × 105 M−1 s−1 and 1.6 × 106 M−1 s−1, between 1.9 s−1 and 3.7 s−1, and between 1.4 × 10−6 M and 4.6 × 10−6 M, respectively. Values of the apparent pseudo-first-order rate constant for the MP11{FeNO}6 conversion to MP11(II) (i.e., h) increase linearly with pH; the apparent values \(h_{\text{OH}^{-}}\) and \(h_{{{\text{H}}_{ 2} {\text{O}}}}\) are 7.2 × 102 M−1 s−1 and 2.5 × 10−4 s−1, respectively. Present data confirm that MP11 is a useful molecular model to highlight the role of the protein matrix on the heme-based reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The term “penta-coordinated ferric heme-proteins” is usually used from biochemists to indicate metal centers either non-coordinating or eventually coordinating a water molecule whose dissociation rate never limits the binding of exogenous ligands (e.g., azide). As a case, the dissociation rate constant of the water molecule from ferric sperm whale Mb is 3.8 × 102 s−1 [47].

Abbreviations

MP11:

Microperoxidase-11

MP11(III):

Ferric MP11

MP11(III)-NO:

Nitrosylated MP11(III)

MP11(II):

Ferrous MP11

MP11(II)-NO:

Nitrosylated MP11(II)

cytc :

Cytochrome c

CL–cytc :

Cardiolipin-bound cytc

CM–cytc :

Carboxymethylated cytc

Mb:

Myoglobin

Ngb:

Neuroglobin

SA:

Serum albumin

HPX:

Hemopexin

References

  1. Harbury HA, Loach PA (1960) J Biol Chem 235:3640–3645

    CAS  PubMed  Google Scholar 

  2. Wilson MT, Ranson RJ, Masiakowski P, Czarnecka E, Brunori M (1977) Eur J Biochem 77:193–199

    Article  CAS  PubMed  Google Scholar 

  3. Aron J, Baldwin DA, Marques HM, Pratt JM, Adams PA (1986) J Inorg Biochem 27:227–243

    Article  CAS  PubMed  Google Scholar 

  4. Braun M, Thöny-Meyer L (2004) Proc Natl Acad Soc USA 101:12830–12835

    Article  CAS  Google Scholar 

  5. Kleingardner EC, Asher WB, Bren KL (2017) Biochemistry 56:143–148

    Article  CAS  PubMed  Google Scholar 

  6. Ow Y-LP, Green, Hao Z, Mak TW (2008) Nat Rev Mol Cell Biol 9:532–542

    Article  CAS  PubMed  Google Scholar 

  7. Stevens JM (2011) Metallomics 3:319–322

    Article  CAS  PubMed  Google Scholar 

  8. Marques HM (2007) Dalton Trans 39:4371–4385

    Article  CAS  Google Scholar 

  9. Sharma VS, Ranney HM, Geibel JF, Traylor TG (1975) Biochem Biophys Res Commun 66:1301–1306

    Article  CAS  PubMed  Google Scholar 

  10. Sharma VS, Isaacson RA, John ME, Waterman MR, Chevion M (1983) Biochemistry 22:3897–3902

    Article  CAS  PubMed  Google Scholar 

  11. Ascenzi P, Sbardella D, Santucci R, Coletta M (2016) J Biol Inorg Chem 21:511–522

    Article  CAS  PubMed  Google Scholar 

  12. Feder N (1971) J Cell Biol 51:339–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ascenzi P, Leboffe L, Santucci R, Coletta M (2015) J Inorg Biochem 144:56–61

    Article  CAS  PubMed  Google Scholar 

  14. Ascenzi P, Sbardella D, Fiocchetti M, Santucci R, Coletta M (2015) J Inorg Biochem 153:121–127

    Article  CAS  PubMed  Google Scholar 

  15. Reddy KS, Yonetani T, Tsuneshige A, Chance B, Kushkuley B, Stavrov SS, Vanderkooi JM (1996) Biochemistry 35:5562–5570

    Article  CAS  PubMed  Google Scholar 

  16. Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their Reactions with ligands. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  17. Ascenzi P, Brunori M, Pennesi G, Ercolani C, Monacelli F (1987) J Chem Soc Dalton Trans 2:369–371

    Article  Google Scholar 

  18. Hoshino M, Maeda M, Konishi R, Seki H, Ford PC (1996) J Am Chem Soc 118:5702–5707

    Article  CAS  Google Scholar 

  19. Boffi A, Sarti P, Amiconi G, Chiancone E (2002) Biophys Chem 98:209–216

    Article  CAS  PubMed  Google Scholar 

  20. Herold S, Fago A, Weber RE, Dewilde S, Moens L (2004) J Biol Chem 279:22841–22847

    Article  CAS  PubMed  Google Scholar 

  21. Herold S, Puppo A (2005) J Biol Inorg Chem 10:946–957

    Article  CAS  PubMed  Google Scholar 

  22. Ascenzi P, Bocedi A, Antonini G, Bolognesi M, Fasano M (2007) FEBS J 274:551–562

    Article  CAS  PubMed  Google Scholar 

  23. Ascenzi P, di Masi A, Gullotta F, Mattu M, Ciaccio C, Coletta M (2010) Biochem Biophys Res Commun 393:196–200

    Article  CAS  PubMed  Google Scholar 

  24. Ascenzi P, Yu C, di Masi A, Gullotta F, De Sanctis G, Fanali G, Fasano M, Coletta M (2010) FEBS J 277:2474–2485

    Article  CAS  PubMed  Google Scholar 

  25. Ascenzi P, Pesce A, Nardini M, Bolognesi M, Ciaccio C, Coletta M, Dewilde S (2013) Biochem Biophys Res Commun 430:1301–1305

    Article  CAS  PubMed  Google Scholar 

  26. Ascenzi P, Marino M, Ciaccio C, Santucci R, Coletta M (2014) IUBMB Life 66:438–447

    Article  CAS  PubMed  Google Scholar 

  27. Ascenzi P, di Masi A, Tundo GR, Pesce A, Visca P, Coletta M (2014) PLoS One 9:e102811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ascenzi P, Bocedi A, Gioia M, Fanali G, Fasano M, Coletta M (2017) J Inorg Biochem 177:63–75

    Article  CAS  PubMed  Google Scholar 

  29. Ascenzi P, Ciaccio C, De Simone G, Santucci R, Coletta M (2017) J Porphyrins Phthalocyanines 21:1–9

    Article  CAS  Google Scholar 

  30. Bateman H (1910) Proc Cambridge Phil Soc 15:423–427

    CAS  Google Scholar 

  31. Hill AV (1910) J Physiol 40:iv–vii

    Google Scholar 

  32. Hoshino M, Ozawa K, Seki H, Ford PC (1993) J Am Chem Soc 115:9568–9575

    Article  CAS  Google Scholar 

  33. Hamdane D, Kiger L, Dewilde S, Green BN, Pesce A, Uzan J, Burmester T, Hankeln T, Bolognesi M, Moens L, Marden MC (2003) J Biol Chem 278:51713–51721

    Article  CAS  PubMed  Google Scholar 

  34. Silkstone G, Kapetanaki SM, Husu I, Vos MH, Wilson MT (2012) Biochemistry 51:6760–6766

    Article  CAS  PubMed  Google Scholar 

  35. Andersen JF, Ding XD, Balfour C, Shokhireva TK, Champagne DE, Walker FA, Montfort WR (2000) Biochemistry 39:10118–10131

    Article  CAS  PubMed  Google Scholar 

  36. Montfort WR, Weichsel A, Andersen JF (2000) Biochim Biophys Acta 1482:110–118

    Article  CAS  PubMed  Google Scholar 

  37. Andersen JF (2010) Toxicon 56:1120–1129

    Article  CAS  PubMed  Google Scholar 

  38. Bianchetti CM, Blouin GC, Bitto E, Olson JS, Phillips GN Jr (2010) Proteins 78:917–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Simone G, Ascenzi P, di Masi A, Polticelli F (2017) Biomol Concepts 8:105–118

    Article  CAS  PubMed  Google Scholar 

  40. De Simone G, Ascenzi P, Polticelli F (2016) IUBMB Life 68:423–428

    Article  CAS  PubMed  Google Scholar 

  41. Fasano M, Bocedi A, Mattu M, Coletta M, Ascenzi P (2004) J Biol Inorg Chem 9:800–806

    Article  CAS  PubMed  Google Scholar 

  42. Moore EG, Gibson QH (1976) J Biol Chem 251:2788–2794

    CAS  PubMed  Google Scholar 

  43. Silkstone G, Kapetanaki SM, Husu I, Vos MH, Wilson MT (2010) J Biol Chem 285:19785–19792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perutz MF (1989) Trends Biochem Sci 14:42–44

    Article  CAS  PubMed  Google Scholar 

  45. Paoli M, Anderson BF, Baker HM, Morgan WT, Smith A, Baker EN (1999) Nat Struct Biol 6:926–931

    Article  CAS  PubMed  Google Scholar 

  46. Pettigrew WG, Moore RG (1987) Cytochromes c: Biological Aspects. Springer, Berlin

    Book  Google Scholar 

  47. Coletta M, Angeletti M, De Sanctis G, Cerroni L, Giardina B, Amiconi G, Ascenzi P (1996) Eur J Biochem 235:49–53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Grant of Excellence Departments, MIUR (Legge 232/2016, Articolo 1, Comma 314-337), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ascenzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ascenzi, P., De Simone, G., Sbardella, D. et al. Reductive nitrosylation of ferric microperoxidase-11. J Biol Inorg Chem 24, 21–29 (2019). https://doi.org/10.1007/s00775-018-1623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1623-z

Keywords

Navigation