Skip to main content
Log in

DNA binding, cleavage and cytotoxicity studies of three mononuclear Cu(II) chloro-complexes containing N–S donor Schiff base ligands

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We report the biological activity of three Cu(II) complexes [Cu(pabt)Cl] (1), [Cu(pma)Cl] (2), and [Cu(pdta)Cl]Cl (3) (pabt = N-(2-mercaptophenyl)-2′-pyridylmethylenimine, pma = N-(2-pyridylmethyl)-2-mercaptoaniline, pdta = 2,2′-di(pyridyl-2-methyleneimine)diphenyl disulfide). 13 display four-line EPR multiplet in solution at RT suggesting that these are mononuclear. DNA-binding studies using spectrophotometric titration of these complexes with calf thymus DNA showed binding through intercalation mode which was found to be consistent with the observation of increased viscosity of DNA and quenching of fluorescence of ethidium bromide bound DNA in the presence of these complexes. All three complexes were found to be efficient in bringing about oxidative and hydrolytic cleavage of DNA. The proposed mechanism of hydrolytic DNA cleavage has been discussed. MTT assay showed remarkable cytotoxicity on cervical cancer HeLa cell line and the IC50 values were 1.27, 4.13, and 3.92 μM for 1, 2 and 3, respectively, as compared to the IC50 value (13 μM) reported for cisplatin in HeLa cells. AO/PI and Annexin-V/PI assay suggest the induction of cell death primarily via apoptotic pathway. Nuclear staining using DAPI was used to assess changes in nuclear morphology during apoptotic cell death. The role of reactive oxygen species (ROS) for induction of apoptotic cell death was studied using H2DCF-DA assay and the result suggests that the generation of ROS by the complexes may be a possible cause for their antiproliferative activity. TUNEL assay showed DNA fragmentation in apoptotic cells. Cell cycle analysis using flow cytometry showed significant increase in the G2/M phase in HeLa cells by the compounds 13.

Graphical abstract

Mononuclear Cu(II) complexes display remarkable cytotoxicity against cervical cancer HeLa cell line. The generation of ROS by the complexes may be a cause of their antiproliferative activity. Fluorescent images from DAPI staining assay revealed that the cells undergoing apoptosis displayed typical features like cell shrinkage, membrane blebbing, chromatin condensation and nuclear fragmentation. TUNEL assay showed DNA fragmentation in apoptotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Todd RC, Lippard SJ (2009) Metallomics 1:280–291

    Article  CAS  Google Scholar 

  2. Barone G, Terenzi A, Lauria A, Almerico AM, Leal JM, Busto N, García B (2013) Coord Chem Rev 257:2848–2862 (And references therein)

    Article  CAS  Google Scholar 

  3. Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Chem Rev 114:815–862

    Article  CAS  Google Scholar 

  4. Zhang CX, Lippard SJ (2003) Currn Opin Chem Biol 7:481–489

    Article  CAS  Google Scholar 

  5. Nagababu P, Barui AK, Thulasiram B, Shobha Devi C, Satyanarayana S, Patra CR, Sreedhar B (2015) J Med Chem 58:5226–5241

    Article  CAS  Google Scholar 

  6. Chauhan M, Banerjee K, Arjmand F (2007) Inorg Chem 46:3072–3082

    Article  CAS  Google Scholar 

  7. Basu U, Khan I, Hussain A, Kondaiah P, Chakravarty AR (2012) Angew Chem Int Ed 51:2658–2661

    Article  CAS  Google Scholar 

  8. Basu U, Khan I, Koley D, Saha S, Kondaiah P, Chakravarty AR (2012) J Inorg Biochem 116:77–87

    Article  CAS  Google Scholar 

  9. Vijayalakshmi R, Kanthimathi M, Parthasarathi R, Nair BU (2006) Bioorg Med Chem 14:3300–3306

    Article  CAS  Google Scholar 

  10. Walker MG, Gonzalez V, Chekmeneva E, Thomas JA (2012) Angew Chem Int Ed 51:12107–12110

    Article  CAS  Google Scholar 

  11. Fabbro C, Ali-Boucetta H, Ros TD, Kostarelos K, Bianco A, Prato M (2012) Chem Commun 48:3911–3926

    Article  CAS  Google Scholar 

  12. Farrer NJ, Salassa L, Sadler PJ (2009) Dalton Trans 10690–10701

  13. Rajalakshmi S, Kiran MS, Nair BU (2014) Eur J Med Chem 80:393–406

    Article  CAS  Google Scholar 

  14. Rajalakshmi S, Weyherm¨uller T, Dinesh M, Nair BU (2012) J Inorg Biochem 117:48–59

    Article  CAS  Google Scholar 

  15. Goswami TK, Gadadhar S, Roy M, Nethaji M, Karande AA, Chakravarty AR (2012) Organometallics 31:3010–3021

    Article  CAS  Google Scholar 

  16. Goswami TK, Chakravarthi BVSK, Roy M, Karande AA, Chakravarty AR (2011) Inorg Chem 50:8452–8464

    Article  CAS  Google Scholar 

  17. Devereux M, Shea DO, Kellett A, McCann M, Walsh M, Egan D, Deegan C, Kedziora K, Rosair G, Muller-Bunz H (2007) J Inorg Biochem 101:881–892

    Article  CAS  Google Scholar 

  18. O’Connor M, Kellett A, McCann M, Rosair G, McNamara M, Howe O, Creaven BS, McClean S, Foltyn-Arfa Kia A, O’Shea D, Devereux M (2012) J Med Chem 55:1957–1968

    Article  Google Scholar 

  19. Tardio S, Basanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, Bussolati O, Franchi-Gazzola R, Marchio L (2011) J Am Chem Soc 133:6235–6242

    Article  Google Scholar 

  20. Dey D, Kaur G, Ranjani A, Gayathri L, Chakraborty P, Adhikary J, Pasan J, Dhanasekaran D, Choudhury AR, Akbarsha MA, Kole N, Biswas B (2014) Eur J Inorg Chem 3350–3358

  21. Adak P, Ghosh B, Bauza A, Frontera A, Blake AJ, Corbella CM, Das- Mukhopadhyay C, Chattopadhyay SK (2016) RSC Adv 6:86851–86861

    Article  CAS  Google Scholar 

  22. Festa RA, Thiele DJ (2011) Curr Biol 21:877–883

    Article  Google Scholar 

  23. Jamieson ER, Lippard SJ (1999) Chem Rev 99(9):2467–2498

    Article  CAS  Google Scholar 

  24. Johnstone TC, Park GY, Lippard SJ (2014) Anticancer Res 34(1):471–476

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Denoyer D, Masaldan S, La Fontaine S, Cater MA (2015) Metallomics 7:1459–1476

    Article  CAS  Google Scholar 

  26. Parveen S, Tabassum S, Arjmand F (2017) RSC Adv 7:6587–6597

    Article  CAS  Google Scholar 

  27. Liu J, Zhang T, Lu T, Qu L, Zhou H, Zhang Q, Ji L (2002) J Inorg Biochem 91:269–276

    Article  CAS  Google Scholar 

  28. Selvakumar B, Rajendiran V, Uma Maheswari P, Stoeckli-Evans H, Palaniandavar M (2006) J Inorg Biochem 100(3):316–330

    Article  CAS  Google Scholar 

  29. Mal SK, Mitra M, Kaur G, Manikandamathavan VM, Kiran MS, Roy Choudhury A, Unni Nair B, Ghosh R (2014) RSC Adv 4:61337–61342

    Article  CAS  Google Scholar 

  30. Saswati, Chakroborty A, Dash SP, Panda AK, Acharyya R, Biswas A, Mukhopadhyay S, Bhutia SK, Crochet A, Patil YP, Nethaji M, Dinda R (2015) Dalton Trans 44:6140–6157

  31. Kumaravel G, Utthra PP, Raman N (2018) Bioorg Chem 77:269–279

    Article  CAS  Google Scholar 

  32. Burstyn JN, Deal KA (1993) Inorg Chem 32:3585–3586

    Article  CAS  Google Scholar 

  33. Deal KA, Hengge AC, Burstyn JN (1996) J Am Chem Soc 118:1713–1718

    Article  CAS  Google Scholar 

  34. Itoh T, Hisada H, Sumiya T, Hosono M, Usui Y, Fujii Y (1997) Chem Commun 677–678

  35. Sissi C, Mancin F, Gatos M, Palumbo M, Tecilla P, Tonellato U (2005) Inorg Chem 44(7):2310–2317

    Article  CAS  Google Scholar 

  36. Wang J, Xia Q, Zheng X, Chen H, Chao H, Mao Z, Ji L (2010) Dalton Trans 39:2128–2136

    Article  CAS  Google Scholar 

  37. Lu J, Sun Q, Li JL, Jiang L, Gu W, Liu X, Tian JL, Yan SP (2014) J Inorg Biochem 137:46–56

    Article  CAS  Google Scholar 

  38. Li F, Xie J, Feng F (2015) New J Chem 39:5654–5660

    Article  CAS  Google Scholar 

  39. Reddy PAN, Nethaji M, Chakravarty AR (2004) Eur J Inorg Chem 1440–1446

  40. Dhar S, Reddy PAN, Chakravarty AR (2004) Dalton Trans 697–698

  41. Ramakrishnan S, Rajendiran V, Palaniandavar M, Periasamy VS, Srinag BS, Krishnamurthy H, Akbarsha MA (2009) Inorg Chem 48:1309–1322

    Article  CAS  Google Scholar 

  42. Reddy PR, Silpa A (2011) Polyhedron 30:565–572

    Article  CAS  Google Scholar 

  43. Reddy PR, Silpa A (2011) Chem Biodivers 8:1245–1265

    Article  Google Scholar 

  44. Koley MK, Chouhan OP, Biswas S, Fernandes J, Banerjee A, Chattopadhyay A, Varghese B, Manoharan PT, Koley AP (2017) Inorg Chim Acta 456:179–198

    Article  CAS  Google Scholar 

  45. Koley MK, Duraipandy N, Kiran MS, Varghese B, Manoharan PT, Koley AP (2017) Inorg Chim Acta 466:538–550

    Article  CAS  Google Scholar 

  46. Koley MK, Parsekar SU, Duraipandy N, Kiran MS, Varghese B, Manoharan PT, Koley AP (2018) Inorg Chim Acta 478:211–221

    Article  CAS  Google Scholar 

  47. Rastogi N, Duggal S, Singh SK, Porwal K, Srivastava VK, Maurya R, Bhatt ML, Mishra DP (2015) Oncotarget 6:43310–43325

    Article  Google Scholar 

  48. Lindoy LF, Livingstone SE (1968) Inorg Chim Acta 2:166–168

    Article  CAS  Google Scholar 

  49. Lindoy LF, Livingstone SE (1968) Inorg Chem 7:1149–1154

    Article  CAS  Google Scholar 

  50. Livingstone SE, Nolan JD (1973) Aust J Chem 26:961–970

    Article  CAS  Google Scholar 

  51. Geary WJ (1971) Coord Chem Rev 7:81–122

    Article  CAS  Google Scholar 

  52. Kumar SM, Kesavan MP, Vinoth Kumar GG, Sankarganesh M, Chakkaravarthi G, Rajagopal G, Rajesh J (2018) J Mol Struct 1153:1–11

    Article  Google Scholar 

  53. Kesavan MP, Vinoth Kumar GG, Dhaveethu Raja J, Anitha K, Karthikeyan S, Rajesh J (2017) J Photochem Photobiol B Biol 20–28

  54. Rajesh J, Kesavan MP, Ayyanaar S, Karthikeyan K, Rajagopal G, Athappan P (2017) Appl Organomet Chem 31:e3868

    Article  Google Scholar 

  55. Gubendran A, Vinoth Kumar GG, Kesavan MP, Rajagopal G, Athappan P, Rajesh J (2018) Appl Organomet Chem 32:e4128

    Article  Google Scholar 

  56. Wilson WD, Ratmeyer L, Zhao M, Strekowski L, Boykin D (1993) Biochemistry 32:4098–4104

    Article  CAS  Google Scholar 

  57. Rajendiran V, Karthik R, Palaniandavar M, Stoeckli-Evans H, Periasamy VS, Akbarsha MA, Srinag BS, Krishnamurthy H (2007) Inorg Chem 46:8208–8221

    Article  CAS  Google Scholar 

  58. Massoud SS, Perkins RS, Louka FR, Xu W, Roux AL, Dutercq Q, Fischer RC, Mautner FA, Handa M, Hiraoka Y, Kreft GL, Bortolotto T, Terenzi H (2014) Dalton Trans 43:10086–10103

    Article  CAS  Google Scholar 

  59. Tardito S, Isella C, Medico E, Marchio L, Bevilacqua E, Hatzoglou M, Bussolati O, Franchi-Gazzola R (2009) J Biol Chem 284:24306–24319

    Article  CAS  Google Scholar 

  60. Ahmed M, Jamil K (2011) Biol Med 3:60–71

    CAS  Google Scholar 

  61. Zeng L, Chen Y, Liu J, Huang H, Guan R, Ji L, Chao H (2016) Sci Rep 6:19449

    Article  CAS  Google Scholar 

  62. Qin J, Shen W, Chen Z, Zhao L, Qin Q, Yu Y, Liang H (2017) Sci Rep 7:46056

    Article  Google Scholar 

  63. Usman M, Arjmand F, Khan RA, Alsalme A, Ahmad M, Tabassum S (2017) RSC Adv 7:47920–47932

    Article  CAS  Google Scholar 

  64. D’Sousa Costa CO, Araujo Neto JH, Baliza IRS, Dias RB, Valverde LF, Vidal MTA, Sales CBS, Rocha CAG, Moreira DRM, Soares MBP, Batista AA, Bezerra DP (2017) Oncotarget 8:104367–104392

    PubMed  PubMed Central  Google Scholar 

  65. Recio Despaigne AA, Da Silva JG, da Costa PR, dos Santos RG, Beraldo H (2014) Molecules 19:17202–17220

    Article  Google Scholar 

  66. Lu Y, Shen T, Yang H, Gu W (2016) Int J Mol Sci 17:775–785

    Article  Google Scholar 

  67. Yu H, Yong Y, Li Q, Ma T, Xu J, Zhu T, Xie J, Zhu W, Cao Z, Dong K, Huang J, Jia L (2016) Chem Biol Drug Des 87:398–408

    Article  CAS  Google Scholar 

  68. Lallana E, Riguera R, Fernandez-Megia E (2011) Angew Chem Int Ed 50:8794–8804

    Article  CAS  Google Scholar 

  69. Senderowicz AM, Sausville EA (2000) J Natl Cancer Inst 92:376–387

    Article  CAS  Google Scholar 

  70. Jackson JR, Gilmartin A, Imburgia C, Winkler JD, Marshall LA, Roshak A (2000) Can Res 60:566–572

    CAS  Google Scholar 

  71. DiPaola RS (2002) Clin Cancer Res 8:3512–3519

    Google Scholar 

  72. Tyagi AK, Singh RP, Agarwal C, Chan DC, Agarwal R (2002) Clin Cancer Res 8:3512–3519

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank SAIF, IIT-Madras for EPR facilities and SAIF, IIT-Bombay for recording ESI MS for the compounds 1 and 3 with Varian Inc., USA Liquid Chromatograph Mass Spectrometer Model 410 Prostar Binary LC with 500 MS IT PDA Detectors. M.K. thanks Ms. Neha Saran and Prof. P. Bhavana, Department of Chemistry, BITS-Pilani K. K. Birla Goa Campus for help with the electrochemical studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjuri Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2018_1620_MOESM1_ESM.pdf

Supplementary material Fig. S1 ESI-MS spectrum of 1, 2 and 3 in CH3CN. Fig. S2 X-band RT solution EPR spectra of 1-3. Fig. S3 Cyclic voltammograms for 1-3 in CH3CN. Fig. S4 Effect of increasing amount of 1-3 on the relative viscosity of CT-DNA (100 μM) in 10 mM Tris.HCl buffer (pH 7.4) at room temperature. Fig. S5 ROS detection in HeLa cells treated with H2O2 (final concentration of 180 µM) as a positive control. Fig. S6 Detection of apoptotic DNA fragmentation by TUNEL assay using Alexa Fluor® picolyl azide dye (PDF 4793 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsekar, S.U., Fernandes, J., Banerjee, A. et al. DNA binding, cleavage and cytotoxicity studies of three mononuclear Cu(II) chloro-complexes containing N–S donor Schiff base ligands. J Biol Inorg Chem 23, 1331–1349 (2018). https://doi.org/10.1007/s00775-018-1620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1620-2

Keywords

Navigation