JBIC Journal of Biological Inorganic Chemistry

, Volume 23, Issue 7, pp 983–993 | Cite as

Multiple siderophores: bug or feature?

  • Darcy L. McRoseEmail author
  • Mohammad R. Seyedsayamdost
  • François M. M. Morel
Part of the following topical collections:
  1. Alison Butler: Papers in Celebration of Her 2018 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry


It is common for bacteria to produce chemically diverse sets of small Fe-binding molecules called siderophores. Studies of siderophore bioinorganic chemistry have firmly established the role of these molecules in Fe uptake and provided great insight into Fe complexation. However, we still do not fully understand why microbes make so many siderophores. In many cases, the release of small structural variants or siderophore fragments has been ignored, or considered as an inefficiency of siderophore biosynthesis. Yet, in natural settings, microbes live in complex consortia and it has become increasingly clear that the secondary metabolite repertoires of microbes reflect this dynamic environment. Multiple siderophore production may, therefore, provide a window into microbial life in the wild. This minireview focuses on three biochemical routes by which multiple siderophores can be released by the same organism—multiple biosynthetic gene clusters, fragment release, and precursor-directed biosynthesis—and highlights emergent themes related to each. We also emphasize the plurality of reasons for multiple siderophore production, which include enhanced iron uptake via synergistic siderophore use, microbial warfare and cooperation, and non-classical functions such as the use of siderophores to take up metals other than Fe.


Multiple siderophores Secondary metabolites Metallophores Iron 



We thank the Princeton Environmental Institute as well as the National Science Foundation (OCE 1657639 granted to F.M.M.) for funding support.


  1. 1.
    Williams DH, Stone MJ, Hauck PR, Rahman SK (1989) J Nat Prod 52:1189–1208PubMedGoogle Scholar
  2. 2.
    Firn RD, Jones CG (2003) Nat Prod Rep 20:382–391Google Scholar
  3. 3.
    Fischbach MA, Clardy J (2007) Nat Chem Biol 3:353–355PubMedGoogle Scholar
  4. 4.
    Challis GL, Hopwood DA (2003) Proc Natl Acad Sci USA 100:14555–14561PubMedGoogle Scholar
  5. 5.
    Hantke K (1981) Mol Gen Genet 182:288–292PubMedGoogle Scholar
  6. 6.
    Zimmermann L, Hantke K, Braun V (1984) J Bacteriol 159:271–277PubMedPubMedCentralGoogle Scholar
  7. 7.
    Bagg A, Neilands JB (1987) Biochemistry 26:5471–5477Google Scholar
  8. 8.
    Crumbliss AL, Harrington JM (2009) Adv Inorg Chem 61:179–250Google Scholar
  9. 9.
    Sandy M, Butler A (2009) Chem Rev 109:4580–4595PubMedPubMedCentralGoogle Scholar
  10. 10.
    Hider RC, Kong X (2010) Nat Prod Rep 27:637–657PubMedGoogle Scholar
  11. 11.
    Kraemer SM (2004) Aquat Sci 66:3–18Google Scholar
  12. 12.
    Crosa JH (1989) Microbiol Rev 53:517–530PubMedPubMedCentralGoogle Scholar
  13. 13.
    Crosa JH, Walsh CT (2002) Microbiol Mol Biol Rev 66:223–249PubMedPubMedCentralGoogle Scholar
  14. 14.
    Challis GL (2005) Chem Bio Chem 6:601–611PubMedGoogle Scholar
  15. 15.
    Fischbach MA, Walsh CT (2006) Chem Rev 106:3468–3496Google Scholar
  16. 16.
    Luckey M, Pollack JR, Wayne R, Ames BN, Neilands JB (1972) J Bacteriol 111:731–738PubMedPubMedCentralGoogle Scholar
  17. 17.
    Granger J, Price NM (1999) Limnol Oceanogr 44:541–555Google Scholar
  18. 18.
    Loper JE, Henkels MD (1999) Appl Environ Microbiol 65:5357–5363PubMedPubMedCentralGoogle Scholar
  19. 19.
    Yamanaka K, Oikawa H, Ogawa H-O, Hosono K, Shinmachi F, Takano H, Sakuda S, Beppu T, Ueda K (2005) Microbiology 151:2899–2905PubMedGoogle Scholar
  20. 20.
    D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K (2010) Chem Biol 17:254–264PubMedPubMedCentralGoogle Scholar
  21. 21.
    Cordero OX, Ventouras L-A, DeLong EF, Polz MF (2012) Proc Natl Acad Sci USA 109:20059–20064PubMedGoogle Scholar
  22. 22.
    Miethke M, Kraushaar T, Marahiel MA (2013) FEBS Lett 587:206–213PubMedGoogle Scholar
  23. 23.
    Tanabe T, Funahashi T, Miyamoto K, Tsujibo H, Yamamoto S (2011) Biol Pharm Bull 34:570–574PubMedGoogle Scholar
  24. 24.
    Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R (2012) Mol Microbiol 86:628–644PubMedPubMedCentralGoogle Scholar
  25. 25.
    Galet J, Deveau A, Hôtel L, Frey-Klett P, Leblond P, Aigle B (2015) Appl Environ Microbiol 81:3132–3141PubMedPubMedCentralGoogle Scholar
  26. 26.
    Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Süssmuth RD (2004) Biometals 17:471–481PubMedGoogle Scholar
  27. 27.
    Fischbach MA, Lin H, Liu DR, Walsh CT (2005) Proc Natl Acad Sci 102:571–576PubMedGoogle Scholar
  28. 28.
    Fischbach MA, Lin H, Liu DR, Walsh CT (2006) Nat Chem Biol 2:132–138PubMedGoogle Scholar
  29. 29.
    Böttcher T, Clardy J (2014) Angew Chem Int Ed Engl 53:3510–3513PubMedPubMedCentralGoogle Scholar
  30. 30.
    Ishida S, Arai M, Niikawa H, Kobayashi M (2011) Biol Pharm Bull 34:917–920PubMedGoogle Scholar
  31. 31.
    Deveau A, Gross H, Palin B, Mehnaz S, Schnepf M, Leblond P, Dorrestein PC, Aigle B (2016) FEMS Microbiol Ecol 92:fiw107PubMedPubMedCentralGoogle Scholar
  32. 32.
    Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009) Proc Natl Acad Sci USA 106:17071–17076Google Scholar
  33. 33.
    Guan LL, Kanoh K, Kamino K (2001) Appl Environ Microbiol 67:1710–1717PubMedPubMedCentralGoogle Scholar
  34. 34.
    Johnstone TC, Nolan EM (2015) Dalton Trans 44:6320–6339PubMedPubMedCentralGoogle Scholar
  35. 35.
    Adler C, Corbalán NS, Seyedsayamdost MR, Pomares MF, de Cristóbal RE, Clardy J, Kolter R, Vincent PA (2012) PLoS One 7:e46754PubMedPubMedCentralGoogle Scholar
  36. 36.
    Charlang GW, Horowitz NH (1971) Proc Natl Acad Sci 68:260–262PubMedGoogle Scholar
  37. 37.
    Charlang G, Ng B, Horowitz NH, Horowitz RM (1981) Mol Cell Biol 1:94–100PubMedPubMedCentralGoogle Scholar
  38. 38.
    Haas H (2014) Natural Product Reports 31:1266–1276PubMedPubMedCentralGoogle Scholar
  39. 39.
    Haas H (2003) Appl Microbiol Biotechnol 62:316–330PubMedGoogle Scholar
  40. 40.
    Johnson L (2008) Mycol Res 112:170–183PubMedGoogle Scholar
  41. 41.
    Kraepiel AML, Bellenger JP, Wichard T, Morel FMM (2009) Biometals 22:573–581PubMedGoogle Scholar
  42. 42.
    Kraemer SM, Duckworth OW, Harrington JM, Schenkeveld WDC (2015) Aquat Geochem 21:159–195Google Scholar
  43. 43.
    Springer SD, Butler A (2016) Coord Chem Rev 306:628–635Google Scholar
  44. 44.
    Kenney GE, Sadek M, Rosenzweig AC (2016) Metall Integr Biometal Sci 8:931–940Google Scholar
  45. 45.
    Balasubramanian R, Kenney GE, Rosenzweig AC (2011) J Biol Chem 286:37313–37319PubMedPubMedCentralGoogle Scholar
  46. 46.
    Bellenger JP, Wichard T, Kraepiel AML (2008) Appl Environ Microbiol 74:1478–1484PubMedPubMedCentralGoogle Scholar
  47. 47.
    Bellenger JP, Wichard T, Kustka AB, Kraepiel AML (2008) Nat Geosci 1:243–246Google Scholar
  48. 48.
    Wichard T, Bellenger JP, Loison A, Kraepiel AML (2008) Environ Sci Technol 42:2408–2413PubMedGoogle Scholar
  49. 49.
    McRose DL, Baars O, Morel FMM, Kraepiel AML (2017) Environ Microbiol 48:11451–13605Google Scholar
  50. 50.
    Martinez JS, Carter-Franklin JN, Mann EL, Martin JD, Haygood MG, Butler A (2003) Proc Natl Acad Sci USA 100:3754–3759PubMedGoogle Scholar
  51. 51.
    Homann VV, Edwards KJ, Webb EA, Butler A (2009) BioMetals 22:565–571PubMedPubMedCentralGoogle Scholar
  52. 52.
    Gauglitz JM, Iinishi A, Ito Y, Butler A (2014) Biochemistry 53:2624–2631PubMedPubMedCentralGoogle Scholar
  53. 53.
    Ratledge C, Ewing M (1996) Microbiology 142:2207–2212PubMedGoogle Scholar
  54. 54.
    Gobin J, Horwitz MA (1996) J Exp Med 183:1527–1532PubMedGoogle Scholar
  55. 55.
    Xu G, Martinez JS, Groves JT, Butler A (2002) J Am Chem Soc 124:13408–13415PubMedGoogle Scholar
  56. 56.
    Reichard P, Kretzschmar R, Kraemer S (2007) Geochim Cosmochim Acta 71:5635–5650Google Scholar
  57. 57.
    Cheah S-F, Kraemer SM, Cervini-Silva J, Sposito G (2003) Chem Geol 198:63–75Google Scholar
  58. 58.
    Cox CD, Adams P (1985) Infect Immun 48:130–138PubMedPubMedCentralGoogle Scholar
  59. 59.
    Albrecht-Gary AM, Blanc S, Rochel N, Ocaktan A, Abdallah M (1994) Inorg Chem 33:6391–6402Google Scholar
  60. 60.
    Cox CD, Graham R (1979) J Bacteriol 137:357–364PubMedPubMedCentralGoogle Scholar
  61. 61.
    Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GLA, Albrecht-Gary A-M (2012) Dalton Trans 41:2820–2834PubMedGoogle Scholar
  62. 62.
    Meyer JM, Van VT, Stintzi A, Berge O, Winkelmann G (1995) Biometals 8:309–317PubMedGoogle Scholar
  63. 63.
    Meyer JM, Hohnadel D, Hallé F (1989) J Gen Microbiol 135:1479–1487PubMedGoogle Scholar
  64. 64.
    Boukhalfa H, Crumbliss AL (2002) Biometals 15:325–339PubMedGoogle Scholar
  65. 65.
    Nurchi VM, Pivetta T, Lachowicz JI, Crisponi G (2009) J Inorg Biochem 103:227–236PubMedGoogle Scholar
  66. 66.
    Sokol PA, Lewis CJ, Dennis JJ (1992) J Med Microbiol 36:184–189PubMedGoogle Scholar
  67. 67.
    Bulen WA, LeComte JR (1962) Biochem Biophys Res Commun 9:523–528PubMedGoogle Scholar
  68. 68.
    Page WJ, Collinson SK, Demange P, Dell A, Abdallah MA (1991) Biol Metals 4:217–222Google Scholar
  69. 69.
    Baars O, Zhang X, Gibson MI, Stone AT, Morel FMM, Seyedsayamdost MR (2017) Angew Chem Int Ed Engl. CrossRefPubMedGoogle Scholar
  70. 70.
    Baars O, Zhang X, Morel FMM, Seyedsayamdost MR (2015) Appl Environ Microbiol 82:27–39PubMedPubMedCentralGoogle Scholar
  71. 71.
    Cornish AS, Page WJ (1998) Microbiology 144:1747–1754Google Scholar
  72. 72.
    Corbin JL, Bulen WA (1969) Biochemistry 8:757–762PubMedGoogle Scholar
  73. 73.
    Cornish AS, Page WJ (1995) Biometals 8:332–338Google Scholar
  74. 74.
    Hider RC, Liu ZD (2004) In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry. Taylor and Francis, Boca Raton, pp 1278–1290Google Scholar
  75. 75.
    Khodr H, Hider R, Duhme-Klair AK (2002) J Biol Inorg Chem 7:891–896PubMedGoogle Scholar
  76. 76.
    Teitzel GM, Geddie A, De Long SK, Kirisits MJ, Whiteley M, Parsek MR (2006) J Bacteriol 188:7242–7256PubMedPubMedCentralGoogle Scholar
  77. 77.
    Martin LW, Reid DW, Sharples KJ, Lamont IL (2011) Biometals 24:1059–1067PubMedGoogle Scholar
  78. 78.
    Izrael-Živković L, Rikalović M, Gojgić-Cvijović G, Kazazić S, Vrvić M, Brčeski I, Beškoski V, Lončarević B, Gopčević K, Karadžić I (2018) RSC Advances 8:10549–10560Google Scholar
  79. 79.
    Dumas Z, Ross-Gillespie A, Kümmerli R (2013) Proc R Soc Lond B Biol Sci 280:20131055Google Scholar
  80. 80.
    Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Proc Natl Acad Sci 99:7072–7077PubMedGoogle Scholar
  81. 81.
    Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) Mol Microbiol 61:1308–1321PubMedGoogle Scholar
  82. 82.
    McRose D, Baars O, Seyedsayamdost MR, Morel FMM (2018) Proc Natl Acad Sci 115:7581–7586PubMedGoogle Scholar
  83. 83.
    Persmark M, Neilands JB (1992) Biometals 5:29–36PubMedGoogle Scholar
  84. 84.
    Sandy M, Butler A (2011) J Nat Prod 74:1207–1212PubMedPubMedCentralGoogle Scholar
  85. 85.
    Sandy M, Han A, Blunt J, Munro M, Haygood M, Butler A (2010) J Nat Prod 73:1038–1043PubMedPubMedCentralGoogle Scholar
  86. 86.
    Han AW, Sandy M, Fishman B, Trindade-Silva AE, Soares CAG, Distel DL, Butler A, Haygood MG (2013) PLoS One 8:e76151PubMedPubMedCentralGoogle Scholar
  87. 87.
    O’Brien IG, Gibson F (1970) Biochimica Et Biophysica Acta 215:393–402PubMedGoogle Scholar
  88. 88.
    Harris WR, Carrano CJ, Cooper SR, Sofen SR, Avdeef AE, McArdle JV, Raymond KN (1979) J Am Chem Soc 101:6097–6104Google Scholar
  89. 89.
    Bryce GF, Brot N (1972) Biochemistry 11:1708–1715PubMedGoogle Scholar
  90. 90.
    Langman L, Young IG, Frost GE, Rosenberg H, Gibson F (1972) J Bacteriol 112:1142–1149PubMedPubMedCentralGoogle Scholar
  91. 91.
    Greenwood KT, Luke RK (1978) Biochem Biophys Acta 525:209–218PubMedGoogle Scholar
  92. 92.
    Brickman TJ, McIntosh MA (1992) J Biol Chem 267:12350–12355PubMedGoogle Scholar
  93. 93.
    Lin H, Fischbach MA, Walsh CT (2005) J Am Chem Soc 127:11075–11084PubMedPubMedCentralGoogle Scholar
  94. 94.
    Reitz ZL, Sandy M, Butler A (2017) Metallomics 9:824–839PubMedGoogle Scholar
  95. 95.
    Zane HK, Naka H, Rosconi F, Sandy M, Haygood MG, Butler A (2014) J Am Chem Soc 136:5615–5618PubMedGoogle Scholar
  96. 96.
    Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD (2014) Nat Prod Rep 31:61–108PubMedPubMedCentralGoogle Scholar
  97. 97.
    Ratledge C, Winder FG (1962) Biochem J 84:501–506PubMedPubMedCentralGoogle Scholar
  98. 98.
    Ratledge C, Hall MJ (1971) J Bacteriol 108:314–319PubMedPubMedCentralGoogle Scholar
  99. 99.
    Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) Science 349:8764–8864Google Scholar
  100. 100.
    Bellenger JP, Wichard T, Xu Y, Kraepiel AML (2011) Environ Microbiol 13:1395–1411PubMedGoogle Scholar
  101. 101.
    Hancock RE, Hantke K, Braun V (1977) Arch Microbiol 114:231–239PubMedGoogle Scholar
  102. 102.
    Hantke K (1990) FEMS Microbiol Lett 67:5–8Google Scholar
  103. 103.
    Thiericke R, Rohr J (1993) Nat Prod Rep 10:265–289PubMedGoogle Scholar
  104. 104.
    Francis J, Macturk HM, Madinaveitia J, Snow GA (1953) Biochem J 55:596–607PubMedPubMedCentralGoogle Scholar
  105. 105.
    Martinez JS, Zhang GP, Holt PD, Jung HT, Carrano CJ, Haygood MG, Butler A (2000) Science 287:1245–1247PubMedGoogle Scholar
  106. 106.
    Martin JD, Ito Y, Homann VV, Haygood MG, Butler A (2006) J Biol Inorg Chem 11:633–641PubMedGoogle Scholar
  107. 107.
    Ito Y, Butler A (2005) Limnol Oceanogr 50:1918–1923Google Scholar
  108. 108.
    Neidleman S (1987) Biotechnol Genet Eng Rev 5:245–268PubMedGoogle Scholar
  109. 109.
    Konetschny-Rapp S, Jung G, Raymond K, Meiwes J, Zähner H (1992) J Am Chem Soc 114:2224–2230Google Scholar
  110. 110.
    Schafft M, Diekmann H (1978) Arch Microbiol 117:203–207PubMedGoogle Scholar
  111. 111.
    Rütschlin S, Gunesch S, Böttcher T (2017) Cell Chem Biol. CrossRefPubMedGoogle Scholar
  112. 112.
    Soe CZ, Telfer TJ, Levina A, Lay PA, Codd R (2016) J Inorg Biochem 162:207–215PubMedGoogle Scholar
  113. 113.
    Rütschlin S, Gunesch S, Böttcher T (2018) ACS Chem Biol 13:1153–1158PubMedGoogle Scholar
  114. 114.
    Sattely ES, Walsh CT (2008) J Am Chem Soc 130:12282–12284PubMedGoogle Scholar
  115. 115.
    Wuest WM, Sattely ES, Walsh CT (2009) J Am Chem Soc 131:5056–5057PubMedPubMedCentralGoogle Scholar
  116. 116.
    Actis LA, Fish W, Crosa JH, Kellerman K, Ellenberger SR, Hauser FM, Sanders-Loehr J (1986) J Bacteriol 167:57–65PubMedPubMedCentralGoogle Scholar
  117. 117.
    Shapiro JA, Wencewicz TA (2015) ACS Infect Dis 2:157–168PubMedGoogle Scholar
  118. 118.
    Shah P, Swiatlo E (2008) Mol Microbiol 68:4–16PubMedGoogle Scholar
  119. 119.
    Francis J, Madinaveitia J, Macturk HM, Snow GA (1949) Nature 163:365–366PubMedGoogle Scholar
  120. 120.
    Neilands JB (1952) J Am Chem Soc 74:4846–4847Google Scholar
  121. 121.
    Hesseltine CW, Pidacks C, Whitehill AR, Bohonos N, Hutchings B, WIlliams JH (1952) J Am Chem Soc 74:1362–1363Google Scholar
  122. 122.
    Lilley BN, Bassler BL (2000) Mol Microbiol 36:940–954PubMedGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  1. 1.Department of GeosciencesPrinceton UniversityPrincetonUSA
  2. 2.Department of ChemistryPrinceton UniversityPrincetonUSA
  3. 3.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations