Skip to main content

Advertisement

Log in

Zn2+-binding in the glutamate-rich region of the intrinsically disordered protein prothymosin-alpha

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Prothymosin-α is a small, multifunctional intrinsically disordered protein associated with cell survival and proliferation which binds multiple Zn2+ ions and undergoes partial folding. The interaction between prothymosin-α and at least two of its protein targets is significantly enhanced in the presence of Zn2+ ions, suggesting that Zn2+ binding plays a role in the protein’s function. The primary sequence of prothymosin-α is highly acidic, with almost 50% comprised of Asp and Glu, and is unusual for a Zn2+-binding protein as it lacks Cys and His residues. To gain a better understanding of the nature of the Zn2+-prothymosin-α interactions and the protein’s ability to discriminate Zn2+ over other divalent cations (e.g., Ca2+, Co2+, Mg2+) we synthesized a set of three model peptides and characterized the effect of metal binding using electrospray ionization mass spectrometry (ESI MS) and circular dichroism (CD) spectroscopy. ESI MS data reveal that the native peptide model of the glutamic acid rich region binds 4 Zn2+ ions with apparent, stepwise Kd values that are, at highest, in the tens of micromolar range. A peptide model with the same amino acid composition as the native sequence, but with the residues arranged randomly, showed no evidence of structural change by CD upon introduction of Zn2+. These results suggest that the high net negative charge of the glutamic acid-rich region of prothymosin-α is not a sufficient criterion for Zn2+ to induce a structural change; rather, Zn2+ binding to prothymosin-α is sequence specific, providing important insight into the behavior of intrinsically disordered proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ProTα:

Prothymosin-alpha

References

  1. Flock T, Weatheritt RJ, Latysheva NS, Babu MM (2014) Curr Opin Struct Biol 26:62–72

    Article  CAS  Google Scholar 

  2. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Chem Rev 114:6589–6631

    Article  Google Scholar 

  3. Dyson HJ, Wright PE (1998) Nat Struct Biol 5(Suppl):499–503

    Article  CAS  Google Scholar 

  4. Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Cell Mol Life Sci 72:137–151

    Article  CAS  Google Scholar 

  5. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) J Mol Biol 337:635–645

    Article  CAS  Google Scholar 

  6. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) Nucleic Acids Res 35(Database issue):D793

    Google Scholar 

  7. Piovesan D, Tabaro F, Mičetić I, Necci M, Quaglia F, Oldfield CJ, Aspromonte MC, Davey NE, Davidović R, Dosztányi Z, Elofsson A, Gasparini A, Hatos A, Kajava AV, Kalmar L, Leonardi E, Lazar T, Macedo-Ribeiro S, Macossay-Castillo M, Meszaros A, Minervini G, Murvai N, Pujols J, Roche DB, Salladini E, Schad E, Schramm A, Szabo B, Tantos A, Tonello F, Tsirigos KD, Veljković N, Ventura S, Vranken W, Warholm P, Uversky VN, Dunker AK, Longhi S, Tompa P, Tosatto SCE (2017) Nucleic Acids Res 45:D227

    Article  Google Scholar 

  8. Uversky VN, Gillespie JR, Fink AL (2000) Proteins 41:415–427

    Article  CAS  Google Scholar 

  9. Uversky VN (2002) Protein Sci 11:739–756

    Article  CAS  Google Scholar 

  10. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Biochemistry 41:6573–6582

    Article  CAS  Google Scholar 

  11. Uversky VN (2011) Int J Biochem Cell Biol 43:1090–1103

    Article  CAS  Google Scholar 

  12. Leonid BU, Uversky VN (2011) Metallomics 3:1163–1180

    Article  Google Scholar 

  13. Ueda H, Matsunaga H, Halder SK (2012) Ann N Y Acad Sci 1269:34–43

    Article  CAS  Google Scholar 

  14. Karapetian RN, Evstafieva AG, Abaeva IS, Chichkova NV, Filonov GS, Rubtsov YP, Sukhacheva EA, Melnikov SV, Schneider U, Wanker EE, Vartapetian AB (2005) Mol Cell Biol 25:1089–1099

    Article  CAS  Google Scholar 

  15. Gomez-Marquez J, Segade F, Dosil M, Pichel JG, Bustelo XR, Freire M (1989) J Biol Chem 264:8451–8454

    CAS  PubMed  Google Scholar 

  16. Chichkova NV, Evstafieva AG, Lyakhov IG, Tsvetkov AS, Smirnova TA, Karapetian RN, Karger EM, Vartapetian AB (2000) Eur J Biochem 267:4745–4752

    Article  CAS  Google Scholar 

  17. Uversky VN, Gillespie JR, Millett IS, Khodyakova AV, Vasilenko RN, Vasiliev AM, Rodionov IL, Kozlovskaya GD, Dolgikh DA, Fink AL, Doniach S, Permyakov EA, Abramov VM (2000) Biochem Biophys Res Commun 267:663–668

    Article  CAS  Google Scholar 

  18. Yi S, Boys BL, Brickenden A, Konermann L, Choy WY (2007) Biochemistry 46:13120–13130

    Article  CAS  Google Scholar 

  19. Kubota S, Adachi Y, Copeland TD, Oroszlan S (1995) Eur J Biochem 233:48–54

    Article  CAS  Google Scholar 

  20. Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO, Fernandes CB, Sottini A, Soranno A, Buholzer KJ, Nettels D, Kragelund BB, Best RB, Schuler B (2018) Nature 555:2A

    Article  Google Scholar 

  21. Berg JM, Shi Y (1996) Science 271:1081–1085

    Article  CAS  Google Scholar 

  22. Laitaoja M, Valjakka J, Janis J (2013) Inorg Chem 52:10983–10991

    Article  CAS  Google Scholar 

  23. Maret W, Li Y (2009) Chem Rev 109:4682–4707

    Article  CAS  Google Scholar 

  24. Gifford JL, Walsh MP, Vogel HJ (2007) Biochem J 405:199–221

    Article  CAS  Google Scholar 

  25. Reid RE, Gariepy J, Saund AK, Hodges RS (1981) J Biol Chem 256:2742–2751

    CAS  PubMed  Google Scholar 

  26. Shaw GS, Hodges RS, Sykes BD (1991) Biochemistry 30:8339–8347

    Article  CAS  Google Scholar 

  27. Gast K, Damaschun H, Eckert BK, Schulze-Forster K, Maurer HR, Muller-Frohne M, Zinver D, Czamecki J, Damaschun G (1995) Biochemistry 34:13211–13218

    Article  CAS  Google Scholar 

  28. Uversky VN, Gillespie JR, Millett IS, Khodyakova AV, Vasiliev AM, Chernovskaya TV, Vasilenko RN, Kozlovskaya GD, Dolgikh DA, Fink AL, Doniach S, Abramov VM (1999) Biochemistry 38:15009–15016

    Article  CAS  Google Scholar 

  29. Wilson CL, Monteith WB, Danell AS, Burns CS (2006) J Pept Sci 12:721–725

    Article  CAS  Google Scholar 

  30. Mattapalli H, Monteith WB, Burns CS, Danell AS (2009) J Am Soc Mass Spectrom 20:2199–2205

    Article  CAS  Google Scholar 

  31. Sun J, Kitova EN, Klassen JS (2007) Anal Chem 79:416–425

    Article  CAS  Google Scholar 

  32. Wentz WA, Danell AS (2017) Int J Mass Spectrom 421:124–128

    Article  CAS  Google Scholar 

  33. Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA (2000) Protein Sci 9:332–343

    Article  CAS  Google Scholar 

  34. DiNitto JM, Kenney JM (2012) Appl Spectrosc 66:180–187

    Article  CAS  Google Scholar 

  35. Lopes JLS, Miles AJ, Whitmore L, Wallace BA (2014) Protein Sci 23:1765–1772

    Article  CAS  Google Scholar 

  36. Holt LE Jr, La Mer VK, Chown HB (1925) J Biol Chem 64:509–565

    CAS  Google Scholar 

  37. Clever HL, Derrick ME, Johnson SA (1992) J Phys Chem Ref Data 21:941–1004

    Article  CAS  Google Scholar 

  38. Sillen LG (1964) In: Sillen LG, Martell AE (eds) Stability constants of metal-ion complexes. The Chemical Society, London, pp 1–358

    Google Scholar 

  39. Nettels D, Müller-Späth S, Küster F, Hofmann H, Haenni D, Rüegger S, Reymond L, Hoffmann A, Kubelka J, Heinz B, Gast K, Best RB, Schuler B (2009) Proc Natl Acad Sci USA 106:20740–20745

    Article  CAS  Google Scholar 

  40. Kjaergaard M, Nørholm AB, Hendus-Altenburger R, Pedersen SF, Poulsen FM, Kragelund BB (2010) Protein Sci 19:1555–1564

    Article  CAS  Google Scholar 

  41. Wuttke R, Hofmann H, Nettels D, Borgia MB, Mittal J, Best RB, Schuler B (2014) Proc Natl Acad Sci 111:5213–5218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by American Cancer Society Internal Research Grant 5-66171 (C.S.B.), American Chemical Society Petroleum Research Fund 41395-GB4 (C.S.B.), East Carolina University Research Development Grant Program Award 217305 (C.S.B.) and East Carolina University Research/Creative Activity Grant 2004-15 (C.S.B.), and the National Science Foundation via Grant 0521228.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin S. Burns.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garapati, S., Monteith, W., Wilson, C. et al. Zn2+-binding in the glutamate-rich region of the intrinsically disordered protein prothymosin-alpha. J Biol Inorg Chem 23, 1255–1263 (2018). https://doi.org/10.1007/s00775-018-1612-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1612-2

Keywords

Navigation