Skip to main content
Log in

Mercury-induced aggregation of human lens γ-crystallins reveals a potential role in cataract disease

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cataract disease results from non-amyloid aggregation of eye lens proteins and is the leading cause of blindness in the world. A variety of studies have implicated both essential and xenobiotic metals as potential etiological agents in cataract disease. Essential metal ions, such as copper and zinc, are known to induce the aggregation in vitro of human γD crystallin, one of the more abundant γ-crystallins in the core of the lens. In this study, we expand the investigation of metal–crystallin interactions to heavy metal ions, such as divalent lead, cadmium and mercury. The impact of these metal ions in the non-amyloid aggregation, protein folding and thermal stability of three homologous human lens γ-crystallins has been evaluated using turbidity assays, electron microscopy, electronic absorption and circular dichroism spectroscopies. Our results show that Hg(II) ions can induce the non-amyloid aggregation of human γC and γS crystallins, but not γD crystallin. The mechanism of Hg-induced aggregation involves direct metal–protein interactions, loss of thermal stability, partial unfolding of the N-terminal domain of these proteins, and formation of disulfide-bridged dimers. Putative Hg(II) binding sites in γ-crystallins involved in metal-induced aggregation are discussed. This study reveals that mercury ions can induce the aggregation of human lens proteins, uncovering a potential role of this heavy metal ion in the bioinorganic chemistry of cataract disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. WHO. (2015) Visual impairment and blindness. 2015. http://www.Who.Int/mediacentre/factsheets/fs282/en/. Cited January 18, 2017

  2. Moreau KL, King JA (2012) Trends Mol Med 18:273–282

    Article  CAS  Google Scholar 

  3. Serebryany E, King JA (2014) Prog Biophys Mol Biol 115:32–41

    Article  CAS  Google Scholar 

  4. Deloitte Access Economics (2014) The economic cost and burden of eye diseases and preventable blindness in Mexico. https://www2.deloitte.com/content/dam/Deloitte/au/Documents/Economics/deloitte-au-economics-cost-eye-diseases-280314.pdf. Accessed 7 July 2017

  5. Graw J (2009) Exp Eye Res 88:173–189

    Article  CAS  Google Scholar 

  6. Hains PG, Truscott RJW (2010) Invest Ophthalmol Vis Sci 51:3107–3114

    Article  Google Scholar 

  7. Lampi K, Wilmarth PA, Murray MR, David LL (2014) Prog Biophys Mol Biol 115:21–31

    Article  CAS  Google Scholar 

  8. Takata T, Oxford JT, Demeler B, Lampi K (2008) Protein Sci 17:1565–1575

    Article  CAS  Google Scholar 

  9. Takata T, Murakami K, Toyama A, Fujii N (2018) Biochim Biophys Acta 1866:767–774

    Article  CAS  Google Scholar 

  10. Haslbeck MPJ, Buchner J, Weinkauf S (2016) Biochim Biophys Acta 1860:149–166

    Article  CAS  Google Scholar 

  11. Vendra VKI, Chandani S, Muniyandi A, Balasubramanian D (2016) Biochim Biophys Acta 1860:333–343

    Article  CAS  Google Scholar 

  12. Acosta-Sampson L, King J (2010) J Mol Biol 401:134–152

    Article  CAS  Google Scholar 

  13. Wride MA (2011) Philos Trans R Soc B-Biol Sci 366:1219–1233

    Article  CAS  Google Scholar 

  14. Kosinski-Collins MS, King J (2003) Protein Sci 12:480–490

    Article  CAS  Google Scholar 

  15. Serebryany E, King JA (2015) J Biol Chem 290:11491–11503

    Article  CAS  Google Scholar 

  16. Serebryany E, Woodard JC, Adkar BV, Shabab M, King JA, Shakhnovich EI (2016) J Biol Chem 291:19172–19183

    Article  CAS  Google Scholar 

  17. Serebryany E, Takata T, Erickson E, Schafheimer N, Wang Y, King JA (2016) Protein Sci 25:1115–1128

    Article  CAS  Google Scholar 

  18. Khago D, Wong EK, Kingsley CN, Freites JA, Tobias DJ, Martin RW (2016) Biochim Biophys Acta 1860:325–332

    Article  CAS  Google Scholar 

  19. Roskamp KW, Montelongo DM, Anorma CD, Bandak DN, Chua JA, Malecha KT, Martin RW (2017) Invest Ophthalmol Vis Sci 58:2397–2405

    Article  CAS  Google Scholar 

  20. Boatz JC, Whitley MJ, Li M, Gronenborn AM, van der Wel PCA (2017) Nat Commun 8:15137

    Article  CAS  Google Scholar 

  21. Donald H (1962) The diseases of occupations. Little, Brown and Co, Boston

    Google Scholar 

  22. Dawczynski J, Blum M, Winnefeld K, Strobel J (2002) Biol Trace Elem Res 90:15–23

    Article  CAS  Google Scholar 

  23. Srivastava VK, Varshney N, Pandey DC (1992) Acta Ophthalmol 70:839–841

    Article  CAS  Google Scholar 

  24. Cekic O (1998) Br J Ophthalmol 82:186–188

    Article  CAS  Google Scholar 

  25. Langford-Smith A, Tilakaratna V, Lythgoe PR, Clark SJ, Bishop PN, Day AJ (2016) PLoS One 11:e0147576

    Article  Google Scholar 

  26. Chang JR, Koo E, Agron E, Hallak J, Clemons T, Azar D, Sperduto RD, Ferris FL, Chew EY (2011) Ophthalmology 118:2113–2119

    Article  Google Scholar 

  27. Ye J, He J, Wang C, Wu H, Shi X, Zhang H, Xie J, Lee SY (2012) Invest Ophthalmol Vis Sci 53:3885–3895

    Article  Google Scholar 

  28. Saffari A, Daher N, Ruprecht A, De Marco C, Pozzi P, Boffi R, Hamad SH, Shafer MM, Schauer JJ, Westerdahl D, Sioutas C (2014) Environ Sci Process Impacts 16:2259–2267

    Article  CAS  Google Scholar 

  29. Lemire M, Fillion M, Frenette B, Mayer A, Philibert A, Sousa Passos CJ, Davee Guimaraes JR, Barbosa F, Mergler D (2010) Environ Health Perspect 118:1584–1589

    Article  CAS  Google Scholar 

  30. https://www.documentcloud.org/documents/2771769-Memo-From-Janet-McCabe-on-Art-Glass-Manf.html#document/p2/a284265. Accessed 1 Aug 2018

  31. Garza-Lombo C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R (2018) Antioxid Redox Signal 28:1669–1703

    Article  CAS  Google Scholar 

  32. Ahmad MF, Singh D, Taiyab A, Ramakrishna T, Raman B, Rao CM (2008) J Mol Biol 382:812–824

    Article  CAS  Google Scholar 

  33. Biswas A, Das KP (2008) Biochemistry 47:804–816

    Article  CAS  Google Scholar 

  34. Laganowsky A, Benesch JLP, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson CV, Horwitz J, Eisenberg D (2010) Protein Sci 19:1031–1043

    Article  CAS  Google Scholar 

  35. Mainz A, Bardiaux B, Kuppler F, Multhaup G, Felli IC, Pierattelli R, Reif B (2012) J Biol Chem 287:1128–1138

    Article  CAS  Google Scholar 

  36. Quintanar L, Dominguez-Calva JA, Serebryany E, Rivillas-Acevedo L, Haase-Pettingell C, Amero C, King JA (2016) ACS Chem Biol 11:263–272

    Article  CAS  Google Scholar 

  37. Robinson NE, Lampi KJ, Speir JP, Kruppa G, Easterling M, Robinson AB (2006) Mol Vis 12:704–711

    CAS  PubMed  Google Scholar 

  38. Wang YPS, Trojanowski T, Knee K, Goulet D, Mukerji I, King J (2010) Invest Ophthalmol Vis Sci 51:672–678

    Article  Google Scholar 

  39. Pande APJ, Asherie N, Lomakin A, Ogun O, King J, Benedek GB (2001) PNAS 98:6116–6120

    Article  CAS  Google Scholar 

  40. Pande A, Pande J, Asherie N, Lomakin A, Ogun O, King JA, Lubsen NH, Walton D, Benedek GB (2000) PNAS 97:1993–1998

    Article  CAS  Google Scholar 

  41. Fu L, Liang JJN (2002) FEBS Lett 513:213–216

    Article  CAS  Google Scholar 

  42. Mills IA, Flaugh SL, Kosinski-Collins MS, King JA (2007) Protein Sci 16:2427–2444

    Article  CAS  Google Scholar 

  43. Sun TX, Das BK, Liang JJ (1997) J Biol Chem 272:6220–6225

    Article  CAS  Google Scholar 

  44. Ma Z, Piszczek G, Wingfield PT, Sergeev YV, Hejtmancik JF (2009) Biochemistry 48:7334–7341

    Article  CAS  Google Scholar 

  45. Luczkowski M, Stachura M, Schirf V, Demeler B, Hemmingsen L, Pecoraro VL (2008) Inorg Chem 47:10875–10888

    Article  CAS  Google Scholar 

  46. Hanson SR, Smith DL, Smith JB (1998) Exp Eye Res 67:301–312

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Council for Science and Technology in Mexico (CONACYT Grant # 221134 to L.Q. and fellowships to J.A.D.C.), MIT-Seed Funds, NIH EY015834 Grant to J.A.K., and Fulbright-García Robles fellowship and Cátedra Marcos Moshinsky to L.Q. The authors would like to thank the technical assistance of Cammeron Haase-Pettingell (at MIT) and Lourdes Rojas at the Unit of Microscopy (Cinvestav).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Quintanar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez-Calva, J.A., Pérez-Vázquez, M.L., Serebryany, E. et al. Mercury-induced aggregation of human lens γ-crystallins reveals a potential role in cataract disease. J Biol Inorg Chem 23, 1105–1118 (2018). https://doi.org/10.1007/s00775-018-1607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1607-z

Keywords

Navigation