Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 23, Issue 7, pp 1105–1118 | Cite as

Mercury-induced aggregation of human lens γ-crystallins reveals a potential role in cataract disease

  • J. A. Domínguez-Calva
  • M. L. Pérez-Vázquez
  • E. Serebryany
  • J. A. King
  • L. QuintanarEmail author
Original Paper
Part of the following topical collections:
  1. Alison Butler: Papers in Celebration of Her 2018 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry

Abstract

Cataract disease results from non-amyloid aggregation of eye lens proteins and is the leading cause of blindness in the world. A variety of studies have implicated both essential and xenobiotic metals as potential etiological agents in cataract disease. Essential metal ions, such as copper and zinc, are known to induce the aggregation in vitro of human γD crystallin, one of the more abundant γ-crystallins in the core of the lens. In this study, we expand the investigation of metal–crystallin interactions to heavy metal ions, such as divalent lead, cadmium and mercury. The impact of these metal ions in the non-amyloid aggregation, protein folding and thermal stability of three homologous human lens γ-crystallins has been evaluated using turbidity assays, electron microscopy, electronic absorption and circular dichroism spectroscopies. Our results show that Hg(II) ions can induce the non-amyloid aggregation of human γC and γS crystallins, but not γD crystallin. The mechanism of Hg-induced aggregation involves direct metal–protein interactions, loss of thermal stability, partial unfolding of the N-terminal domain of these proteins, and formation of disulfide-bridged dimers. Putative Hg(II) binding sites in γ-crystallins involved in metal-induced aggregation are discussed. This study reveals that mercury ions can induce the aggregation of human lens proteins, uncovering a potential role of this heavy metal ion in the bioinorganic chemistry of cataract disease.

Keywords

Lens crystallins Human gamma crystallin Mercury Heavy metal ions Cataract disease 

Notes

Acknowledgements

This research has been supported by the National Council for Science and Technology in Mexico (CONACYT Grant # 221134 to L.Q. and fellowships to J.A.D.C.), MIT-Seed Funds, NIH EY015834 Grant to J.A.K., and Fulbright-García Robles fellowship and Cátedra Marcos Moshinsky to L.Q. The authors would like to thank the technical assistance of Cammeron Haase-Pettingell (at MIT) and Lourdes Rojas at the Unit of Microscopy (Cinvestav).

Supplementary material

775_2018_1607_MOESM1_ESM.pdf (540 kb)
Supplementary material 1 (PDF 540 kb)

References

  1. 1.
    WHO. (2015) Visual impairment and blindness. 2015. http://www.Who.Int/mediacentre/factsheets/fs282/en/. Cited January 18, 2017
  2. 2.
    Moreau KL, King JA (2012) Trends Mol Med 18:273–282CrossRefGoogle Scholar
  3. 3.
    Serebryany E, King JA (2014) Prog Biophys Mol Biol 115:32–41CrossRefGoogle Scholar
  4. 4.
    Deloitte Access Economics (2014) The economic cost and burden of eye diseases and preventable blindness in Mexico. https://www2.deloitte.com/content/dam/Deloitte/au/Documents/Economics/deloitte-au-economics-cost-eye-diseases-280314.pdf. Accessed 7 July 2017
  5. 5.
    Graw J (2009) Exp Eye Res 88:173–189CrossRefGoogle Scholar
  6. 6.
    Hains PG, Truscott RJW (2010) Invest Ophthalmol Vis Sci 51:3107–3114CrossRefGoogle Scholar
  7. 7.
    Lampi K, Wilmarth PA, Murray MR, David LL (2014) Prog Biophys Mol Biol 115:21–31CrossRefGoogle Scholar
  8. 8.
    Takata T, Oxford JT, Demeler B, Lampi K (2008) Protein Sci 17:1565–1575CrossRefGoogle Scholar
  9. 9.
    Takata T, Murakami K, Toyama A, Fujii N (2018) Biochim Biophys Acta 1866:767–774CrossRefGoogle Scholar
  10. 10.
    Haslbeck MPJ, Buchner J, Weinkauf S (2016) Biochim Biophys Acta 1860:149–166CrossRefGoogle Scholar
  11. 11.
    Vendra VKI, Chandani S, Muniyandi A, Balasubramanian D (2016) Biochim Biophys Acta 1860:333–343CrossRefGoogle Scholar
  12. 12.
    Acosta-Sampson L, King J (2010) J Mol Biol 401:134–152CrossRefGoogle Scholar
  13. 13.
    Wride MA (2011) Philos Trans R Soc B-Biol Sci 366:1219–1233CrossRefGoogle Scholar
  14. 14.
    Kosinski-Collins MS, King J (2003) Protein Sci 12:480–490CrossRefGoogle Scholar
  15. 15.
    Serebryany E, King JA (2015) J Biol Chem 290:11491–11503CrossRefGoogle Scholar
  16. 16.
    Serebryany E, Woodard JC, Adkar BV, Shabab M, King JA, Shakhnovich EI (2016) J Biol Chem 291:19172–19183CrossRefGoogle Scholar
  17. 17.
    Serebryany E, Takata T, Erickson E, Schafheimer N, Wang Y, King JA (2016) Protein Sci 25:1115–1128CrossRefGoogle Scholar
  18. 18.
    Khago D, Wong EK, Kingsley CN, Freites JA, Tobias DJ, Martin RW (2016) Biochim Biophys Acta 1860:325–332CrossRefGoogle Scholar
  19. 19.
    Roskamp KW, Montelongo DM, Anorma CD, Bandak DN, Chua JA, Malecha KT, Martin RW (2017) Invest Ophthalmol Vis Sci 58:2397–2405CrossRefGoogle Scholar
  20. 20.
    Boatz JC, Whitley MJ, Li M, Gronenborn AM, van der Wel PCA (2017) Nat Commun 8:15137CrossRefGoogle Scholar
  21. 21.
    Donald H (1962) The diseases of occupations. Little, Brown and Co, BostonGoogle Scholar
  22. 22.
    Dawczynski J, Blum M, Winnefeld K, Strobel J (2002) Biol Trace Elem Res 90:15–23CrossRefGoogle Scholar
  23. 23.
    Srivastava VK, Varshney N, Pandey DC (1992) Acta Ophthalmol 70:839–841CrossRefGoogle Scholar
  24. 24.
    Cekic O (1998) Br J Ophthalmol 82:186–188CrossRefGoogle Scholar
  25. 25.
    Langford-Smith A, Tilakaratna V, Lythgoe PR, Clark SJ, Bishop PN, Day AJ (2016) PLoS One 11:e0147576CrossRefGoogle Scholar
  26. 26.
    Chang JR, Koo E, Agron E, Hallak J, Clemons T, Azar D, Sperduto RD, Ferris FL, Chew EY (2011) Ophthalmology 118:2113–2119CrossRefGoogle Scholar
  27. 27.
    Ye J, He J, Wang C, Wu H, Shi X, Zhang H, Xie J, Lee SY (2012) Invest Ophthalmol Vis Sci 53:3885–3895CrossRefGoogle Scholar
  28. 28.
    Saffari A, Daher N, Ruprecht A, De Marco C, Pozzi P, Boffi R, Hamad SH, Shafer MM, Schauer JJ, Westerdahl D, Sioutas C (2014) Environ Sci Process Impacts 16:2259–2267CrossRefGoogle Scholar
  29. 29.
    Lemire M, Fillion M, Frenette B, Mayer A, Philibert A, Sousa Passos CJ, Davee Guimaraes JR, Barbosa F, Mergler D (2010) Environ Health Perspect 118:1584–1589CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Garza-Lombo C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R (2018) Antioxid Redox Signal 28:1669–1703CrossRefGoogle Scholar
  32. 32.
    Ahmad MF, Singh D, Taiyab A, Ramakrishna T, Raman B, Rao CM (2008) J Mol Biol 382:812–824CrossRefGoogle Scholar
  33. 33.
    Biswas A, Das KP (2008) Biochemistry 47:804–816CrossRefGoogle Scholar
  34. 34.
    Laganowsky A, Benesch JLP, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson CV, Horwitz J, Eisenberg D (2010) Protein Sci 19:1031–1043CrossRefGoogle Scholar
  35. 35.
    Mainz A, Bardiaux B, Kuppler F, Multhaup G, Felli IC, Pierattelli R, Reif B (2012) J Biol Chem 287:1128–1138CrossRefGoogle Scholar
  36. 36.
    Quintanar L, Dominguez-Calva JA, Serebryany E, Rivillas-Acevedo L, Haase-Pettingell C, Amero C, King JA (2016) ACS Chem Biol 11:263–272CrossRefGoogle Scholar
  37. 37.
    Robinson NE, Lampi KJ, Speir JP, Kruppa G, Easterling M, Robinson AB (2006) Mol Vis 12:704–711PubMedGoogle Scholar
  38. 38.
    Wang YPS, Trojanowski T, Knee K, Goulet D, Mukerji I, King J (2010) Invest Ophthalmol Vis Sci 51:672–678CrossRefGoogle Scholar
  39. 39.
    Pande APJ, Asherie N, Lomakin A, Ogun O, King J, Benedek GB (2001) PNAS 98:6116–6120CrossRefGoogle Scholar
  40. 40.
    Pande A, Pande J, Asherie N, Lomakin A, Ogun O, King JA, Lubsen NH, Walton D, Benedek GB (2000) PNAS 97:1993–1998CrossRefGoogle Scholar
  41. 41.
    Fu L, Liang JJN (2002) FEBS Lett 513:213–216CrossRefGoogle Scholar
  42. 42.
    Mills IA, Flaugh SL, Kosinski-Collins MS, King JA (2007) Protein Sci 16:2427–2444CrossRefGoogle Scholar
  43. 43.
    Sun TX, Das BK, Liang JJ (1997) J Biol Chem 272:6220–6225CrossRefGoogle Scholar
  44. 44.
    Ma Z, Piszczek G, Wingfield PT, Sergeev YV, Hejtmancik JF (2009) Biochemistry 48:7334–7341CrossRefGoogle Scholar
  45. 45.
    Luczkowski M, Stachura M, Schirf V, Demeler B, Hemmingsen L, Pecoraro VL (2008) Inorg Chem 47:10875–10888CrossRefGoogle Scholar
  46. 46.
    Hanson SR, Smith DL, Smith JB (1998) Exp Eye Res 67:301–312CrossRefGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  • J. A. Domínguez-Calva
    • 1
  • M. L. Pérez-Vázquez
    • 1
  • E. Serebryany
    • 2
  • J. A. King
    • 2
  • L. Quintanar
    • 1
    Email author
  1. 1.Departamento de QuímicaCentro de Investigación y de Estudios Avanzados (Cinvestav)Mexico CityMexico
  2. 2.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations