Skip to main content
Log in

A reevaluation of iron binding by Mycobactin J

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The complex stability constant (log β110) and the free iron concentration (pM) are used to compare the relative strength of iron binding by siderophores. Direct measurements of these thermodynamic parameters are often not possible for siderophores due to very large log β110 values ranging from 30 to 50. Instead, siderophore iron(III)-binding constants are determined by competitive experiments with other strong chelators with known values, such as EDTA. Iron(III) binding constants of water-insoluble siderophores, such as the mycobactins produced by the mycobacterium family, have never been directly measured. Since mycobactins contain two hydroxamic acid binding motifs, their log β110 values have been assumed to be comparable to those of other hydroxamate-based siderophores like desferrioxamine B, at ~ 30. However, exochelin MN, another mycobacterial siderophore that contains two hydroxamic acid moieties, has a log β110 of 39.1 and a pM of 31.1, which makes it among the strongest siderophores known. We have found that mycobactin J, the amphiphilic siderophore of Mycobacterium paratuberculosis, can remove iron(III) from TrenCAM (log β110 = 43.6) within 1 min in methanol. This surprising result indicates that log β110 for mycobactin J is ~ 43 and the ligand exchange kinetics in methanol is fast. The results imply that mycobactins are capable of removing iron quickly from very strongly binding siderophores in a cellular milieu. We propose a model mechanism for iron acquisition by pathogenic mycobacteria in vivo. This model explains how the host iron captured by siderophores can be returned to the invading pathogen even in the absence of active uptake mechanisms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We thank Dr. Kiat-Hwa Chan for preparing the TrenCAM sample

  2. Vergne et al. provide no reference for this number. Ratledge’s 1999 review references Snow’s 1970 review article, which contains only the lower bound of 1030

Abbreviations

MbJ:

Mycobactin J

Tren:

TrenCAM

References

  1. Dye C, Scheele S, Dolin P, Pathania V (1999) Raviglione RC and project WHOGSM. JAMA-J Am Med Assoc 282:677–686

    Article  CAS  Google Scholar 

  2. Marx FM, Yaesoubi R, Menzies NA, Salomon JA, Bilinski A, Beyers N, Cohen T (2018) Lancet Glob Health 6:E426–E435

    Article  Google Scholar 

  3. Churchyard G, Kim P, Shah NS, Rustomjee R, Gandhi N, Mathema B, Dowdy D, Kasmar A, Cardenas V (2017) J Infect Dis 216:S629–S635

    Article  Google Scholar 

  4. Auld SC, Kasmar AG, Dowdy DW, Mathema B, Gandhi NR, Churchyard GJ, Rustomjee R, Shah NS (2017) J Infect Dis 216:S662–S668

    Article  Google Scholar 

  5. Global tuberculosis control: epidemiology, strategy, financing: WHO report 2009 (2009) World Health Organization. Switzerland, Geneva, pp 6–33

    Google Scholar 

  6. Vilcheze C, Kim J, Jacobs WR (2018) Antimicrob Agents Chemother 62(3). pii: e02165-17. https://doi.org/10.1128/AAC.02165-17

  7. Trofimov V, Kicka S, Mucaria S, Hanna N, Ramon-Olayo F, Vela-Gonzalez Del Peral L, Lelievre J, Ballell L, Scapozza L, Besra GS, Cox JAG, Soldati T (2018) Sci Reports 8:3939. https://doi.org/10.1038/s41598-018-22228-6

    Article  CAS  Google Scholar 

  8. Rehberg N, Akone HS, Ioerger TR, Erlenkamp G, Daletos G, Gohlke H, Proksch P, Kalscheuer R (2018) ACS Infect Dis 4:123–134

    Article  CAS  Google Scholar 

  9. Meylan S, Andrews IW, Collins JJ (2018) Cell 172:1228–1238

    Article  CAS  Google Scholar 

  10. Gokarn K, Pal RB (2018) Infect Drug Resist 11:61–75

    Article  Google Scholar 

  11. Emani CS, Williams MJ, Wiid IJ, Baker B and Carolis C (2018) Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02236-17

    Article  Google Scholar 

  12. De Matteis L, Jary D, Lucia A, Garcia-Embid S, Serrano-Sevilla I, Perez D, Ainsa JA, Navarro FP, de la Fuente JM (2018) Chem Eng J 340:181–191

    Article  Google Scholar 

  13. Song LJ, Jenner M, Masschelein J, Jones C, Bull MJ, Harris SR, Hartkoorn RC, Vocat A, Romero-Canelon I, Coupland P, Webster G, Dunn M, Weiser R, Paisey C, Cole ST, Parkhill J, Mahenthiralingam E, Challis GL (2017) J Am Chem Soc 139:7974–7981

    Article  CAS  Google Scholar 

  14. Masschelein J, Jenner M, Challis GL (2017) Nat Prod Rep 34:712–783

    Article  CAS  Google Scholar 

  15. Ghosh M, Miller PA, Mollmann U, Claypoo WD, Schroeder VA, Wolter WR, Suckow M, Yu HL, Li S, Huang WG, Zajicek J, Miller MJ (2017) J Med Chem 60:4577–4583

    Article  CAS  Google Scholar 

  16. Ji C, Miller PA, Miller MJ (2012) J Am Chem Soc 134:9898–9901

    Article  CAS  Google Scholar 

  17. Juárez-Hernández RR, HZ H, Miller MJ (2013) Siderophore-mediated iron acquisition: Target for the development of selective antibiotics towards mycobacterium tuberculosis. Springer, Heidelberg

    Google Scholar 

  18. Ryan KJ, Ray CG (eds) (2003) Sherris medical microbiology: An introduction to infectious diseases sherris medical microbiology: an introduction to infectious diseases. McGraw-Hill, New York

    Google Scholar 

  19. Springer SD, Butler A (2016) Coord Chem Rev 306:628–635

    Article  CAS  Google Scholar 

  20. Butler A, Theisen RM (2010) Coord Chem Rev 254:288–296

    Article  CAS  Google Scholar 

  21. Carver PL (2018) Cur Med Chem 25:85–96

    Article  CAS  Google Scholar 

  22. Bairwa G, Jung WH, Kronstad JW (2017) Metallomics 9:215–227

    Article  CAS  Google Scholar 

  23. Ali MK, Kim RY, Karim R, Mayall JR, Martin KL, Shahandeh A, Abbasian F, Starkey MR, Loustaud-Ratti V, Johnstone D, Milward EA, Hansbro PM, Horvat JC (2017) Int J Biochem Cell Biol 88:181–195

    Article  CAS  Google Scholar 

  24. Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Trends Mol Med 22:1077–1090

    Article  CAS  Google Scholar 

  25. Wang J, Moolji J, Dufort A, Staffa A, Domenech P, Reed MB, Behr MA (2016) J Bacteriol 198:857–866

    Article  CAS  Google Scholar 

  26. Sritharan M (2016) J Bacteriol 198:2399–2409

    Article  CAS  Google Scholar 

  27. Neyrolles O, Wolschendorf F, Mitra A, Niederweis M (2015) Immun Rev 264:249–263

    Article  CAS  Google Scholar 

  28. Raymond KN, Allred BE, Sia AK (2015) Acc Chem Res 48:2496–2505

    Article  CAS  Google Scholar 

  29. Raymond KN, Muller G, Matzanke BF (1984) Top Curr Chem 123:49–102

    Article  CAS  Google Scholar 

  30. Fang Z, Sampson SL, Warren RM, van Pittius NCG, Newton-Foot M (2015) Tuberculosis 95:123–130

    Article  CAS  Google Scholar 

  31. Horwitz LD, Horwitz MA (2014) Antiox Redox Signal 21:2246–2261

    Article  CAS  Google Scholar 

  32. Hardy CD, Butler A (2018) J Biol Inorg Chem 23. https://doi.org/10.1007/s00775-018-1584-2

  33. De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE 3rd (2000) Proc Natl Acad Sci USA 97:1252–1257

    Article  Google Scholar 

  34. Ratledge C (2004) Tuberculosis 84:110–130

    Article  Google Scholar 

  35. Lane SJ, Marshall PS, Upton RJ, Ratledge C, Ewing M (1995) Tetrahedron Lett 36:4129–4132

    Article  CAS  Google Scholar 

  36. Gobin J, Moore CH, Reeve JR, Wong DK, Gibson BW, Horwitz MA (1995) Proc Natl Acad Sci USA 92:5189–5193

    Article  CAS  Google Scholar 

  37. Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995) Chem Biol 2:553–561

    Article  CAS  Google Scholar 

  38. Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995) Biochem J 305:187–196

    Article  CAS  Google Scholar 

  39. Snow GA (1970) Bacteriol Rev 34:99–125

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwartz BD, De Voss JJ (2001) Tetrahedron Lett 42:3653–3655

    Article  CAS  Google Scholar 

  41. Snow GA (1965) Biochem J 97:166

    Article  CAS  Google Scholar 

  42. Vergne AF, Walz AJ, Miller MJ (2000) Nat Prod Rep 17:99–116

    Article  CAS  Google Scholar 

  43. Tsuda M, Yamakawa M, Oka S, Tanaka Y, Hoshino Y, Mikami Y, Sato A, Fujiwara H, Ohizumi Y, Kobayashi J (2005) J Nat Prod 68:462–464

    Article  CAS  Google Scholar 

  44. Mitchell JM, Shaw JT (2007) Org Lett 9:1679–1681

    Article  CAS  Google Scholar 

  45. Ying Y, Hong J (2007) Tetrahedron Lett 48:8104–8107

    Article  CAS  Google Scholar 

  46. Martinez JS, Zhang GP, Holt PD, Jung HT, Carrano CJ, Haygood MG, Butler A (2000) Science 287:1245–1247

    Article  CAS  Google Scholar 

  47. Lambrecht RS, Collins MT (1993) Microb Pathog 14:229–238

    Article  CAS  Google Scholar 

  48. Luo M, Fadeev EA, Groves JT (2005) J Am Chem Soc 127:1726–1736

    Article  CAS  Google Scholar 

  49. Fadeev EA, Luo MK, Groves JT (2004) J Am Chem Soc 126:12065–12075

    Article  CAS  Google Scholar 

  50. Xu GF, Martinez JS, Groves JT, Butler A (2002) J Am Chem Soc 124:13408–13415

    Article  CAS  Google Scholar 

  51. Luo M, Lin H, Fischbach MA, Liu DR, Walsh CT, Groves JT (2006) ACS Chem Biol 1:29–32

    Article  CAS  Google Scholar 

  52. Luo M, Fadeev EA, Groves JT (2005) Nat Chem Biol 1:149–153

    Article  CAS  Google Scholar 

  53. Prados-Rosales R, Weinrick BC, Pique DG, Jacobs WR, Casadevall A, Rodriguez GM (2014) J Bacteriol 196:1250–1256

    Article  Google Scholar 

  54. Rodgers SJ, Lee CW, Ng CY, Raymond KN (1987) Inorg Chem 26:1622–1625

    Article  CAS  Google Scholar 

  55. Thomas F, Baret P, Imbert D, Pierre JL, Serratrice G (1999) Bioorg Med Chem Lett 9:3035–3040

    Article  CAS  Google Scholar 

  56. McQueen TM (2004) A novel approach to the study of equilibrium phase behavior: theory and practice. Chemistry. Harvey Mudd College, Claremont

    Google Scholar 

  57. Miller MJ, Walz AJ, Zhu H, Wu CR, Moraski G, Mollmann U, Tristani EM, Crumbliss AL, Ferdig MT, Checkley L, Edwards RL, Boshoff HI (2011) J Am Chem Soc 133:2076–2079

    Article  CAS  Google Scholar 

  58. McBride NS, Hall EAH (2015) Electroanalysis 27:833–842

    Article  CAS  Google Scholar 

  59. Crumbliss AL and Harrington JM (2009) In: R. Van Eldik and C. D. Hubbard (eds) Advances in Inorganic Chemistry, vol 61: Metal Ion Controlled Reactivity, p 179–250, Elsevier Academic Press Inc, San Diego

  60. Taylor SW, Luther GW, Waite JH (1994) Inorg Chem 33:5819–5824

    Article  CAS  Google Scholar 

  61. Holt PD, Reid RR, Lewis BL, Luther GW, Butler A (2005) Inorg Chem 44:7671–7677

    Article  CAS  Google Scholar 

  62. Lewis BL, Holt PD, Taylor SW, Wilhelm SW, Trick CG, Butler A, Luther GW (1995) Mar Chem 50:179–188

    Article  CAS  Google Scholar 

  63. Kikkeri R, Traboulsi H, Humbert N, Gumienna-Kontecka E, Arad-Yellin R, Melman G, Elhabiri M, Albrecht-Gary AM, Shanzer A (2007) Inorg Chem 46:2485–2497

    Article  CAS  Google Scholar 

  64. Harrington JM, Park H, Ying YC, Hong JY, Crumbliss AL (2011) Metallomics 3:464–471

    Article  CAS  Google Scholar 

  65. Faller B, Nick H (1994) J Am Chem Soc 116:3860–3865

    Article  CAS  Google Scholar 

  66. Harris WR, Raymond KN (1979) J Am Chem Soc 101:6534–6541

    Article  CAS  Google Scholar 

  67. Schwarzenbach G, Schwarzenbach K (1963) Helv Chim Acta 46:1390–1400

    Article  CAS  Google Scholar 

  68. Ratledge C, Dale J (eds) (1999) Mycobacteria: molecular biology and virulence mycobacteria: molecular biology and virulence. Blackwell Science Ltd., Oxford

    Google Scholar 

  69. De Voss JJ, Rutter K, Schroeder BG, Barry CE (1999) J Bacteriol 181:4443–4451

    PubMed  PubMed Central  Google Scholar 

  70. MacCordick HJ, Schleiffer JJ, Duplatre G (1985) Radiochim Acta 38:43–47

    Article  CAS  Google Scholar 

  71. Snow GA (1969) Biochem J 115:199–205

    Article  CAS  Google Scholar 

  72. Harris WR, Carrano CJ, Cooper SR, Sofen SR, Avdeef AE, McArdle JV, Raymond KN (1979) J Am Chem Soc 101:6097–6104

    Article  CAS  Google Scholar 

  73. Tufano TP, Raymond KN (1981) J Am Chem Soc 103:6617–6624

    Article  CAS  Google Scholar 

  74. Dhungana S, Miller MJ, Dong L, Ratledge C, Crumbliss AL (2003) J Am Chem Soc 125:7654–7663

    Article  CAS  Google Scholar 

  75. Evers A, Hancock RD, Martell AE, Motekaitis RJ (1989) Inorg Chem 28:2189–2195

    Article  CAS  Google Scholar 

  76. Farkas E, Enyedy EA, Csoka H (1999) Polyhedron 18:2391–2398

    Article  CAS  Google Scholar 

  77. Bagno A, Comuzzi C, Scorrano G (1994) J Am Chem Soc 116:916–924

    Article  CAS  Google Scholar 

  78. Brink CP, Crumbliss AL (1984) Inorg Chem 23:4708–4718

    Article  CAS  Google Scholar 

  79. Hocking RK, DeBeer George S, Raymond KN, Hodgson KO, Hedman B, Solomon EI (2010) J Am Chem Soc 132:4006–4015

    Article  CAS  Google Scholar 

  80. Ratledge C, Patel PV, Mundy J (1982) J Gen Microbiol 128:1559–1565

    CAS  PubMed  Google Scholar 

  81. Macham LP, Ratledge C, Nocton JC (1975) Infect Immun 12:1242–1251

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Jones CM, Wells RM, Madduri AVR, Renfrow MB, Ratledge C, Moody DB, Niederweis M (2014) Proc Natl Acad Sci USA 111:1945–1950

    Article  CAS  Google Scholar 

  83. Gobin J, Horwitz MA (1996) J Exp Med 183:1527–1532

    Article  CAS  Google Scholar 

  84. Stephenson MC, Ratledge C (1979) J Gen Microbiol 110:193–202

    Article  CAS  Google Scholar 

  85. van Manen HJ, Kraan YM, Roos D, Otto C (2005) Proc Natl Acad Sci USA 102:10159–10164

    Article  Google Scholar 

  86. Bougneres L, Helft J, Tiwari S, Vargas P, Chang BHJ, Chan L, Campisi L, Lauvau G, Hugues S, Kumar P, Kamphorst AO, Dumenil AML, Nussenzweig M, MacMicking JD, Amigorena S, Guermonprez P (2009) Immunity 31:232–244

    Article  CAS  Google Scholar 

  87. Rodriguez GM, Prados-Rosales R (2016) Appl Microbiol Biotechnol 100:3887–3892

    Article  CAS  Google Scholar 

  88. Rezabal E, Mercero JM, Lopez X, Ugalde JM (2006) J Inorg Biochem 100:374–384

    Article  CAS  Google Scholar 

  89. Lide DR (ed) (2010) CRC Handbook of Chemistry and Physics. CRC Press/Taylor and Francis, Boca Raton

    Google Scholar 

  90. Fricke H (1953) Nature 172:731–732

    Article  CAS  Google Scholar 

  91. Fricke H, Schwan HP, Li K (1956) Nature 177:134–135

    Article  CAS  Google Scholar 

  92. Asami K, Hanai T, Koizumi N (1976) J Membr Biol 28:169–180

    Article  CAS  Google Scholar 

  93. Serratrice G, Biaso F, Pierre J-L, Blanc S, Albrecht-Gary A-M (2007) Eur J Inorg Chem 2007:3681–3685

    Article  Google Scholar 

  94. Neese F, Solomon EI (1998) J Am Chem Soc 120:12829–12848

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the US National Science Foundation award CHE-1464578. This paper is dedicated, with congratulations, to Alison Butler on the occasion of her receipt of the ACS Alfred Bader Award in Bioinorganic or Bioorganic Chemistry for 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Groves.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McQueen, C.F., Groves, J.T. A reevaluation of iron binding by Mycobactin J. J Biol Inorg Chem 23, 995–1007 (2018). https://doi.org/10.1007/s00775-018-1592-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1592-2

Keywords

Navigation