JBIC Journal of Biological Inorganic Chemistry

, Volume 23, Issue 7, pp 1025–1036 | Cite as

Evaluation of a reducible disulfide linker for siderophore-mediated delivery of antibiotics

  • Wilma Neumann
  • Elizabeth M. NolanEmail author
Original Paper
Part of the following topical collections:
  1. Alison Butler: Papers in Celebration of Her 2018 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry


Bacterial iron uptake machinery can be hijacked for the targeted delivery of antibiotics into pathogens by attaching antibiotics to siderophores, iron chelators that are employed by bacteria to obtain this essential nutrient. We synthesized and evaluated Ent–SS–Cipro, a siderophore–antibiotic conjugate comprised of the triscatecholate siderophore enterobactin and the fluoroquinolone antibiotic ciprofloxacin that contains a self-immolative disulfide linker. This linker is designed to be cleaved after uptake into the reducing environment of the bacterial cytoplasm. We show that the disulfide bond of Ent–SS–Cipro is cleaved by reducing agents, including the cellular reductant glutathione, which results in release of the unmodified fluoroquinolone antibiotic. Antibacterial activity assays against a panel of Escherichia coli show that Ent–SS–Cipro exhibits activity against some, but not all, E. coli. This work informs the design of siderophore–antibiotic conjugates, particularly those carrying antibiotics with cytoplasmic targets that require release after uptake into bacterial cells, and indicates that disulfide linkers may not be generally applicable for conjugation strategies of antibiotics.

Graphical abstract


Siderophore Antibiotic conjugate Disulfide linker Targeted delivery Iron uptake 



2,3-Dihydroxybenzoyl serine








Glutathione disulfide





We thank the National Institutes of Health (NIH Grants 1R21AI126465 and 1R01AI114625) for financial support; Lynette Cegelski for providing E. coli UTI89; Manuela Raffatellu for providing E. coli JB2; Ardeypharm GmbH for providing E. coli Nissle 1917. W.N. acknowledges the German National Academy of Sciences Leopoldina for a postdoctoral fellowship (LPDS 2015-08). MS instrumentation maintained by the MIT Center for Environmental Health Sciences (CEHS) is supported by a core center grant from the National Institute of Environmental Health Sciences, National Institutes of Health (NIEHS grant P30-ES002109).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

775_2018_1588_MOESM1_ESM.pdf (4.1 mb)
Supplementary material 1 (PDF 4185 kb)


  1. 1.
    Clatworthy AE, Pierson E, Hung DT (2007) Nat Chem Biol 3:541–548CrossRefGoogle Scholar
  2. 2.
    Lewis K (2013) Nat Rev Drug Discovery 12:371–387CrossRefGoogle Scholar
  3. 3.
    Hood MI, Skaar EP (2012) Nat Rev Microbiol 10:525–537CrossRefGoogle Scholar
  4. 4.
    Weinberg ED (1975) JAMA 231:39–41CrossRefGoogle Scholar
  5. 5.
    Palmer LD, Skaar EP (2016) Annu Rev Genet 50:67–91CrossRefGoogle Scholar
  6. 6.
    Miethke M, Marahiel MA (2007) Microbiol Mol Biol Rev 71:413–451CrossRefGoogle Scholar
  7. 7.
    Hider RC, Kong X (2010) Nat Prod Rep 27:637–657CrossRefGoogle Scholar
  8. 8.
    Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ (2010) Biometals 23:601–611CrossRefGoogle Scholar
  9. 9.
    Wencewicz TA, Miller MJ (2017) Top Med Chem. Springer, Berlin, Heidelberg, pp 1–33Google Scholar
  10. 10.
    Braun V, Pramanik A, Gwinner T, Köberle M, Bohn E (2009) Biometals 22:3–13CrossRefGoogle Scholar
  11. 11.
    Zahner H, Diddens H, Keller-Schierlein W, Nägeli HU (1977) Jpn J Antibiot 30:S201–S206Google Scholar
  12. 12.
    Diarra MS, Lavoie MC, Jacques M, Darwish I, Dolence EK, Dolence JA, Ghosh A, Ghosh M, Miller MJ, Malouin F (1996) Antimicrob Agents Chemother 40:2610–2617CrossRefGoogle Scholar
  13. 13.
    Ji C, Juárez-Hernández RE, Miller MJ (2012) Future Med Chem 4:297–313CrossRefGoogle Scholar
  14. 14.
    Page MGP (2013) Ann NY Acad Sci 1277:115–126CrossRefGoogle Scholar
  15. 15.
    Tillotson GS (2016) Infect Dis (Auckl) 9:45–52CrossRefGoogle Scholar
  16. 16.
    Watanabe N-A, Nagasu T, Katsu K, Kitoh K (1987) Antimicrob Agents Chemother 31:497–504CrossRefGoogle Scholar
  17. 17.
    Curtis NAC, Eisenstadt RL, East SJ, Cornford RJ, Walker LA, White AJ (1988) Antimicrob Agents Chemother 32:1879–1886CrossRefGoogle Scholar
  18. 18.
    Silley P, Griffiths JW, Monsey D, Harris AM (1990) Antimicrob Agents Chemother 34:1806–1808CrossRefGoogle Scholar
  19. 19.
    Hashizume T, Sanada M, Nakagawa S, Tanaka N (1990) J Antibiot 43:1617–1620CrossRefGoogle Scholar
  20. 20.
    Nikaido H, Rosenberg EY (1990) J Bacteriol 172:1361–1367CrossRefGoogle Scholar
  21. 21.
    McKee JA, Sharma SK, Miller MJ (1991) Bioconjugate Chem 2:281–291CrossRefGoogle Scholar
  22. 22.
    Dolence EK, Minnick AA, Lin C-E, Miller MJ, Payne SM (1991) J Med Chem 34:968–978CrossRefGoogle Scholar
  23. 23.
    Ji C, Miller PA, Miller MJ (2012) J Am Chem Soc 134:9898–9901CrossRefGoogle Scholar
  24. 24.
    Zheng T, Nolan EM (2014) J Am Chem Soc 136:9677–9691CrossRefGoogle Scholar
  25. 25.
    Kohira N, West J, Ito A, Ito-Horiyama T, Nakamura R, Sato T, Rittenhouse S, Tsuji M, Yamano Y (2016) Antimicrob Agents Chemother 60:729–734CrossRefGoogle Scholar
  26. 26.
    Chairatana P, Zheng T, Nolan EM (2015) Chem Sci 6:4458–4471CrossRefGoogle Scholar
  27. 27.
    Ruiz N, Kahne D, Silhavy TJ (2006) Nat Rev Microbiol 4:57–66CrossRefGoogle Scholar
  28. 28.
    Silhavy TJ, Kahne D, Walker S (2010) Cold Spring Harb Perspect Biol 2:a000414CrossRefGoogle Scholar
  29. 29.
    Hennard C, Truong QC, Desnottes J-F, Paris J-M, Moreau NJ, Abdallah MA (2001) J Med Chem 44:2139–2151CrossRefGoogle Scholar
  30. 30.
    Rivault F, Liébert C, Burger A, Hoegy F, Abdallah MA, Schalk IJ, Mislin GLA (2007) Bioorg Med Chem Lett 17:640–644CrossRefGoogle Scholar
  31. 31.
    Wencewicz TA, Möllmann U, Long TE, Miller MJ (2009) Biometals 22:633–648CrossRefGoogle Scholar
  32. 32.
    Md-Saleh SR, Chilvers EC, Kerr KG, Milner SJ, Snelling AM, Weber JP, Thomas GH, Duhme-Klair A-K, Routledge A (2009) Bioorg Med Chem Lett 19:1496–1498CrossRefGoogle Scholar
  33. 33.
    Noël S, Gasser V, Pesset B, Hoegy F, Rognan D, Schalk IJ, Mislin GLA (2011) Org Biomol Chem 9:8288–8300CrossRefGoogle Scholar
  34. 34.
    Juárez-Hernández RE, Miller PA, Miller MJ (2012) ACS Med Chem Lett 3:799–803CrossRefGoogle Scholar
  35. 35.
    Ji C, Miller MJ (2012) Bioorg Med Chem 20:3828–3836CrossRefGoogle Scholar
  36. 36.
    Wencewicz TA, Miller MJ (2013) J Med Chem 56:4044–4052CrossRefGoogle Scholar
  37. 37.
    Wencewicz TA, Long TE, Möllmann U, Miller MJ (2013) Bioconjugate Chem 24:473–486CrossRefGoogle Scholar
  38. 38.
    Milner SJ, Seve A, Snelling AM, Thomas GH, Kerr KG, Routledge A, Duhme-Klair A-K (2013) Org Biomol Chem 11:3461–3468CrossRefGoogle Scholar
  39. 39.
    Souto A, Montaos MA, Balado M, Osorio CR, Rodríguez J, Lemos ML, Jiménez C (2013) Bioorg Med Chem 21:295–302CrossRefGoogle Scholar
  40. 40.
    Milner SJ, Snelling AM, Kerr KG, Abd-El-Aziz A, Thomas GH, Hubbard RE, Routledge A, Duhme-Klair A-K (2014) Bioorg Med Chem 22:4499–4505CrossRefGoogle Scholar
  41. 41.
    Fardeau S, Dassonville-Klimpt A, Audic N, Sasaki A, Pillon M, Baudrin E, Mullié C, Sonnet P (2014) Bioorg Med Chem 22:4049–4060CrossRefGoogle Scholar
  42. 42.
    Ji C, Miller MJ (2015) Biometals 28:541–551CrossRefGoogle Scholar
  43. 43.
    Braun V, Günthner K, Hantke K, Zimmermann L (1983) J Bacteriol 156:308–315PubMedPubMedCentralGoogle Scholar
  44. 44.
    Neumann W, Sassone-Corsi M, Raffatellu M, Nolan EM (2018) J Am Chem Soc 140:5193–5201CrossRefGoogle Scholar
  45. 45.
    Lin H, Fischbach MA, Liu DR, Walsh CT (2005) J Am Chem Soc 127:11075–11084CrossRefGoogle Scholar
  46. 46.
    Zhu M, Valdebenito M, Winkelmann G, Hantke K (2005) Microbiology 151:2363–2372CrossRefGoogle Scholar
  47. 47.
    Zheng T, Nolan EM (2015) Bioorg Med Chem Lett 25:4987–4991CrossRefGoogle Scholar
  48. 48.
    Paulen A, Gasser V, Hoegy F, Perraud Q, Pesset B, Schalk IJ, Mislin GLA (2015) Org Biomol Chem 13:11567–11579CrossRefGoogle Scholar
  49. 49.
    Paulen A, Hoegy F, Roche B, Schalk IJ, Mislin GLA (2017) Bioorg Med Chem Lett 27:4867–4870CrossRefGoogle Scholar
  50. 50.
    Liu R, Miller PA, Vakulenko SB, Stewart NK, Boggess WC, Miller MJ (2018) J Med Chem 61:3845–3854CrossRefGoogle Scholar
  51. 51.
    Zheng T, Bullock JL, Nolan EM (2012) J Am Chem Soc 134:18388–18400CrossRefGoogle Scholar
  52. 52.
    Vrudhula VM, MacMaster JF, Li Z, Kerr DE, Senter PD (2002) Bioorg Med Chem Lett 12:3591–3594CrossRefGoogle Scholar
  53. 53.
    Vlahov IR, Leamon CP (2012) Bioconjugate Chem 23:1357–1369CrossRefGoogle Scholar
  54. 54.
    Brezden A, Mohamed MF, Nepal M, Harwood JS, Kuriakose J, Seleem MN, Chmielewski J (2016) J Am Chem Soc 138:10945–10949CrossRefGoogle Scholar
  55. 55.
    Kim HS, Song WY, Kim HJ (2015) Org Biomol Chem 13:73–76CrossRefGoogle Scholar
  56. 56.
    Ritz D, Beckwith J (2001) Annu Rev Microbiol 55:21–48CrossRefGoogle Scholar
  57. 57.
    Masip L, Veeravalli K, Georgiou G (2006) Antioxid Redox Signaling 8:753–762CrossRefGoogle Scholar
  58. 58.
    Van Loi V, Rossius M, Antelmann H (2015) Front Microbiol 6:187CrossRefGoogle Scholar
  59. 59.
    Serjeant EP, Dempsey B, International Union of Pure and Applied Chemistry (IUPAC) (1979) IUPAC Chemical Data Series, No 23. Pergamon Press, Oxford, New YorkGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations