Maturation of the [Ni–4Fe–4S] active site of carbon monoxide dehydrogenases

  • Mériem Merrouch
  • Martino Benvenuti
  • Marco Lorenzi
  • Christophe Léger
  • Vincent Fourmond
  • Sébastien Dementin
Part of the following topical collections:
  1. The Biogenesis of Iron-sulfur Proteins: From Cellular Biology to Molecular Aspects


Nickel-containing enzymes are diverse in terms of function and active site structure. In many cases, the biosynthesis of the active site depends on accessory proteins which transport and insert the Ni ion. We review and discuss the literature related to the maturation of carbon monoxide dehydrogenases (CODH) which bear a nickel-containing active site consisting of a [Ni–4Fe–4S] center called the C-cluster. The maturation of this center has been much less studied than that of other nickel-containing enzymes such as urease and NiFe hydrogenase. Several proteins present in certain CODH operons, including the nickel-binding proteins CooT and CooJ, still have unclear functions. We question the conception that the maturation of all CODH depends on the accessory protein CooC described as essential for nickel insertion into the active site. The available literature reveals biological variations in CODH active site biosynthesis.


Carbon monoxide dehydrogenase Active site Iron–sulfur cluster Maturation 



The authors acknowledge financial support from CNRS, Aix Marseille Université, Agence Nationale de la Recherche (ANR-12-BS08-0014, ANR-14-CE05-0010, ANR-15-CE05-0020, ANR-17-CE11-0027) and the A*MIDEX Grant (ANR-11-IDEX-0001-02) funded by the French Government “Investissements d’Avenir” program. M.L. thanks the Erasmus program for funding. M.M., M.B., C.L., V.F. and S.D. are members of FrenchBIC (


  1. 1.
    Ragsdale SW (2009) J Biol Chem 284:18571–18575CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Boer JL, Mulrooney SB, Hausinger RP (2014) Arch Biochem Biophys 544:142–152CrossRefPubMedGoogle Scholar
  3. 3.
    Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) J Bacteriol 183:5134–5144CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ensign SA, Bonam D, Ludden PW (1989) Biochemistry 28:4968–4973CrossRefPubMedGoogle Scholar
  5. 5.
    Hadj-Said J, Pandelia ME, Leger C, Fourmond V, Dementin S (2015) Biochim Biophys Acta Bioenerg 1847:1574–1583CrossRefGoogle Scholar
  6. 6.
    Loke HK, Bennett GN, Lindahl PA (2000) Proc Natl Acad Sci USA 97:12530–12535CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Drennan CL, Heo J, Sintchak MD, Schreiter E, Ludden PW (2001) Proc Natl Acad Sci USA 98:11973–11978CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O (2001) Science 293:1281–1285CrossRefPubMedGoogle Scholar
  9. 9.
    Darnault C, Volbeda A, Kim EJ, Legrand P, Vernede X, Lindahl PA, Fontecilla-Camps JC (2003) Nat Struct Biol 10:271–279CrossRefPubMedGoogle Scholar
  10. 10.
    Ragsdale SW (2004) Crit Rev Biochem Mol Biol 39:165–195CrossRefPubMedGoogle Scholar
  11. 11.
    King GM, Weber CF (2007) Nat Rev Microbiol 5:107–118CrossRefPubMedGoogle Scholar
  12. 12.
    Cypionka H, Meyer O (1983) J Bacteriol 156:1178–1187PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hille R, Dingwall S, Wilcoxen J (2015) J Biol Inorg Chem 20:243–251CrossRefPubMedGoogle Scholar
  14. 14.
    Uffen RL (1983) J Bacteriol 155:956–965PubMedPubMedCentralGoogle Scholar
  15. 15.
    Lindahl PA (2002) Biochemistry 41:2097–2105CrossRefPubMedGoogle Scholar
  16. 16.
    Kerby RL, Ludden PW, Roberts GP (1995) J Bacteriol 177:2241–2244CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Singer SW, Hirst MB, Ludden PW (2006) Biochim Biophys Acta 1757:1582–1591CrossRefPubMedGoogle Scholar
  18. 18.
    Soboh B, Linder D, Hedderich R (2002) Eur J Biochem 269:5712–5721CrossRefPubMedGoogle Scholar
  19. 19.
    Henstra AM, Dijkema C, Stams AJ (2007) Environ Microbiol 9:1836–1841CrossRefPubMedGoogle Scholar
  20. 20.
    Parshina SN, Sipma J, Henstra AM, Stams AJ (2010) Int J Microbiol 2010:319527CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hocking WP, Roalkvam I, Magnussen C, Stokke R, Steen IH (2015) Archaea 2015:235384CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Diender M, Stams AJ, Sousa DZ (2015) Front Microbiol 6:1275CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Oelgeschlager E, Rother M (2009) FEMS Microbiol Lett 292:254–260CrossRefPubMedGoogle Scholar
  24. 24.
    Drennan CL, Doukov TI, Ragsdale SW (2004) J Biol Inorg Chem 9:511–515CrossRefPubMedGoogle Scholar
  25. 25.
    Volbeda A, Fontecilla-Camps JC (2004) J Biol Inorg Chem 9:525–532CrossRefPubMedGoogle Scholar
  26. 26.
    Seravalli J, Ragsdale SW (2000) Biochemistry 39:1274–1277CrossRefPubMedGoogle Scholar
  27. 27.
    Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, Dodson RJ, Madupu R, Sullivan SA, Kolonay JF, Haft DH, Nelson WC, Tallon LJ, Jones KM, Ulrich LE, Gonzalez JM, Zhulin IB, Robb FT, Eisen JA (2005) PLoS Genet 1:e65CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ragsdale SW, Pierce E (2008) Biochim Biophys Acta 1784:1873–1898CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Can M, Armstrong FA, Ragsdale SW (2014) Chem Rev 114:4149–4174CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ainala SK, Seol E, Park S (2015) J Biotechnol 211:79–80CrossRefPubMedGoogle Scholar
  31. 31.
    Watt RK, Ludden PW (1999) J Bacteriol 181:4554–4560PubMedPubMedCentralGoogle Scholar
  32. 32.
    Fox JD, Kerby RL, Roberts GP, Ludden PW (1996) J Bacteriol 178:1515–1524CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fox JD, He Y, Shelver D, Roberts GP, Ludden PW (1996) J Bacteriol 178:6200–6208CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) J Mol Biol 317:41–72CrossRefPubMedGoogle Scholar
  35. 35.
    Jeoung JH, Giese T, Grunwald M, Dobbek H (2009) Biochemistry 48:11505–11513CrossRefPubMedGoogle Scholar
  36. 36.
    Jeon WB, Cheng J, Ludden PW (2001) J Biol Chem 276:38602–38609CrossRefPubMedGoogle Scholar
  37. 37.
    Jeoung JH, Giese T, Grunwald M, Dobbek H (2010) J Mol Biol 396:1165–1179CrossRefPubMedGoogle Scholar
  38. 38.
    Draper GC, Gober JW (2002) Annu Rev Microbiol 56:567–597CrossRefPubMedGoogle Scholar
  39. 39.
    Timm J, Brochier-Armanet C, Perard J, Zambelli B, Ollagnier-de-Choudens S, Ciurli S, Cavazza C (2017) Metallomics 9:575–583CrossRefPubMedGoogle Scholar
  40. 40.
    Watt RK, Ludden PW (1998) J Biol Chem 273:10019–10025CrossRefPubMedGoogle Scholar
  41. 41.
    Inoue T, Takao K, Fukuyama Y, Yoshida T, Sako Y (2014) Biosci Biotechnol Biochem 78:582–587CrossRefPubMedGoogle Scholar
  42. 42.
    Carlson ED, Papoutsakis ET (2017) Appl Environ Microbiol 83:e00829–17CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ, Rees DC (1992) Science 257:1653–1659CrossRefPubMedGoogle Scholar
  44. 44.
    Rubio LM, Ludden PW (2005) J Bacteriol 187:405–414CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hu Y, Ribbe MW (2016) Annu Rev Biochem 85:455–483CrossRefPubMedGoogle Scholar
  46. 46.
    Inoue T, Yoshida T, Wada K, Daifuku T, Fukuyama K, Sako Y (2011) Biosci Biotechnol Biochem 75:1392–1394CrossRefPubMedGoogle Scholar
  47. 47.
    Domnik L, Merrouch M, Goetzl S, Jeoung JH, Leger C, Dementin S, Fourmond V, Dobbek H (2017) Angew Chem Int Ed Engl 56:15466–15469CrossRefPubMedGoogle Scholar
  48. 48.
    Sekar BS, Raj SM, Seol E, Ainala SK, Lee J, Park S (2014) Int J Hydrogen Energ 39:15446–15454CrossRefGoogle Scholar
  49. 49.
    Ensign SA, Ludden PW (1991) J Biol Chem 266:18395–18403PubMedGoogle Scholar
  50. 50.
    Hube M, Blokesch M, Bock A (2002) J Bacteriol 184:3879–3885CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mehta N, Olson JW, Maier RJ (2003) J Bacteriol 185:726–734CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mehta NS, Benoit S, Mysore JV, Sousa RS, Maier RJ (2005) Infect Immun 73:5311–5318CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Olson JW, Mehta NS, Maier RJ (2001) Mol Microbiol 39:176–182CrossRefPubMedGoogle Scholar
  54. 54.
    Benoit SL, Zbell AL, Maier RJ (2007) Microbiology 153:3748–3756CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lacasse MJ, Zamble DB (2016) Biochemistry 55:1689–1701CrossRefPubMedGoogle Scholar
  56. 56.
    Farrugia MA, Macomber L, Hausinger RP (2013) J Biol Chem 288:13178–13185CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Desguin B, Soumillion P, Hausinger RP, Hols P (2017) FEMS Microbiol Rev 41:S71–S83CrossRefPubMedGoogle Scholar
  58. 58.
    Zheng K, Ngo PD, Owens VL, Yang XP, Mansoorabadi SO (2016) Science 354:339–342CrossRefPubMedGoogle Scholar
  59. 59.
    Zeer-Wanklyn CJ, Zamble DB (2017) Curr Opin Chem Biol 37:80–88CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  • Mériem Merrouch
    • 1
  • Martino Benvenuti
    • 1
  • Marco Lorenzi
    • 1
  • Christophe Léger
    • 1
  • Vincent Fourmond
    • 1
  • Sébastien Dementin
    • 1
  1. 1.Aix-Marseille Université, CNRS, BIP UMR 7281, Institut de Microbiologie de la MéditerranéeMarseille Cedex 20France

Personalised recommendations