Skip to main content
Log in

Formation of chelate structure between His-Met dipeptide and diaqua-cisplatin complex; DFT/PCM computational study

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Interaction of cisplatin in activated diaqua-form with His-Met dipeptide is explored using DFT approach with PCM model. First the conformation space of the dipeptide is explored to find the most stable structure (labeled 0683). Several functionals with double-zeta basis set are used for optimization and obtained order of conformers is confirmed by the CCSD(T) single-point calculations. Supermolecular model is used to determine reaction coordinate for the replacement of aqua ligands consequently by N-site of histidine and S-site of methionine and reversely. Despite the monoadduct of Pt–S(Met) is thermodynamically less stable this reaction passes substantially faster (by several orders of magnitude) than coordination of cisplatin to histidine. The consequent chelate formation occurs relatively fast with energy release up to 12 kcal mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eastman A (1999) In: Lippert B (ed) Cisplatin. Wiley-VCH, Weinheim, pp 111–134

    Google Scholar 

  2. Hindmarsh K, House DA, Turnbull MM (1997) Inorg Chim Acta 257:11–18

    Article  CAS  Google Scholar 

  3. Miller SE, House DA (1991) Inorg Chim Acta 187:125–132

    Article  CAS  Google Scholar 

  4. Miller SE, Gerard KJ, House DA (1991) Inorg Chim Acta 190:135–144

    Article  CAS  Google Scholar 

  5. Zimmermann T, Leszczynski J, Burda JV (2011) J Mol Model 17:2385–2393

    Article  CAS  PubMed  Google Scholar 

  6. Burda JV, Zeizinger M, Leszczynski J (2005) J Comput Chem 26:907–914

    Article  CAS  PubMed  Google Scholar 

  7. Pascoe JM, Roberts JJ (1974) Biochem Pharmacol 23:1345–1357

    Article  CAS  PubMed  Google Scholar 

  8. Peleg-Shulman T, Najajreh Y, Gibson D (2002) J Inorg Biochem 91:306–311

    Article  CAS  PubMed  Google Scholar 

  9. Kartalou M, Essigmann JM (2001) Mutat Res Fundam Mol Mech Mutagen 478:1–21

    Article  CAS  Google Scholar 

  10. Fojta M, Pivonkova H, Brazdova M, Kovarova L, Palecek E, Pospisilova S, Vojtesek B, Kasparkova J, Brabec V (2003) Biochem Pharmacol 65:1305–1316

    Article  CAS  PubMed  Google Scholar 

  11. Pivonkova H, Pecinka P, Ceskova P, Fojta M (2006) FEBS J 273:4693–4706

    Article  CAS  PubMed  Google Scholar 

  12. Donahue BA, Augot M, Bellon SF, Treiber DK, Toney JH, Lippard SJ, Essigmann JM (1990) Biochemistry 29:5872–5880

    Article  CAS  PubMed  Google Scholar 

  13. Andrews PA, Jones JA (1991) Cancer Commun 3:1–10

    Article  CAS  Google Scholar 

  14. Burger AM, Double JA, Newell DR (1997) Eur J Cancer 33:638–644

    Article  CAS  PubMed  Google Scholar 

  15. Zamble DB, Lippard SJ (1999) In: Lippert B (ed) Cisplatin. Wiley-VCH, Weinheim, pp 73–110

    Google Scholar 

  16. Lippert B (1999) Cisplatin: chem. and biochemistry of a leading anticancer drug. Wiley-VCH, Wienheim

    Book  Google Scholar 

  17. Zimmermann T, Zeizinger M, Burda JV (2005) J Inorg Biochem 99:2184–2196

    Article  CAS  PubMed  Google Scholar 

  18. Zimmermann T, Chval Z, Burda JV (2009) J Phys Chem B 113:3139–3150. https://doi.org/10.1021/jp807645x

    Article  CAS  PubMed  Google Scholar 

  19. Zimmermann T, Burda JV (2010) Dalton Trans 39:1295–1301

    Article  CAS  PubMed  Google Scholar 

  20. Norman RE, Ranford JD, Sadler PJ (1992) Inorg Chem 31:877–888

    Article  CAS  Google Scholar 

  21. Williams KM, Rowan C, Mitchell J (2004) Inorg Chem 43:1190–1196

    Article  CAS  PubMed  Google Scholar 

  22. Appleton TG, Connor JW, Hall JR (1988) Inorg Chem 27:130–137

    Article  CAS  Google Scholar 

  23. Wei HY, Liu Q, Lin J, Jiang PJ, Guo ZJ (2004) Inorg Chem Commun 7:792–794

    Article  CAS  Google Scholar 

  24. Riley CM, Sternson LA, Repta AJ (1983) J Pharm Sci 72:351–355

    Article  CAS  PubMed  Google Scholar 

  25. Reedijk J (1999) Chem Rev 99:2499–2510

    Article  CAS  PubMed  Google Scholar 

  26. Vrana O, Brabec V (2002) Biochemistry 41:10994–10999

    Article  CAS  PubMed  Google Scholar 

  27. Manka S, Becker F, Hohage O, Sheldrick WS (2004) J Inorg Biochem 98:1947–1956

    Article  CAS  PubMed  Google Scholar 

  28. Hohage O, Sheldrick WS (2006) J Inorg Biochem 100:1506–1513

    Article  CAS  PubMed  Google Scholar 

  29. Appleton TG, Connor JW, Hall JR, Prenzler PD (1989) Inorg Chem 28:2030–2037

    Article  CAS  Google Scholar 

  30. Bose RN, Ghosh SK, Moghaddas S (1997) J Inorg Biochem 65:199–205

    Article  CAS  PubMed  Google Scholar 

  31. Lau JKC, Deubel DV (2005) Chem Eur J 11:2849–2855

    Article  CAS  PubMed  Google Scholar 

  32. Hagrman D, Goodisman J, Souid A-K (2004) J. Pharmacol Exp Ther 308:658–666

    Article  CAS  PubMed  Google Scholar 

  33. Dabrowiak JC, Goodisman J, Souid A-K (2002) Drug Metab Dispos 30:1378–1384

    Article  CAS  PubMed  Google Scholar 

  34. Dedon PC, Borch RF (1987) Biochem Pharmacol 36:1955–1964

    Article  CAS  PubMed  Google Scholar 

  35. Bose RN, Moghaddas S, Weaver EL, Cox EH (1995) Inorg Chem 34:5878–5883

    Article  CAS  Google Scholar 

  36. Zou J, Yang XD, An F, Wang K (1998) J Inorg Biochem 70:227–232

    Article  CAS  PubMed  Google Scholar 

  37. Da Silva VJ, Costa LAS, Dos Santos HF (2008) Int J Quantum Chem 108:401–414

    Article  CAS  Google Scholar 

  38. Chang GR, Zhou LX, Chen D (2006) Chin J Struct Chem 25:533–542

    CAS  Google Scholar 

  39. Robertazzi A, Platts JA (2004) J Comput Chem 25:1060–1067

    Article  CAS  PubMed  Google Scholar 

  40. Robertazzi A, Platts JA (2005) Inorg Chem 44:267–274

    Article  CAS  PubMed  Google Scholar 

  41. Robertazzi A, Platts JA (2006) Chem Eur J 12:5747–5756

    Article  CAS  PubMed  Google Scholar 

  42. Wysokinski R, Hernik K, Szostak R, Michalska D (2007) Chem Phys 333:37–48

    Article  CAS  Google Scholar 

  43. Yuan QH, Zhou LX (2007) Chin J Struct Chem 26:962–972

    CAS  Google Scholar 

  44. Erturk H, Hofmann A, Puchta R, van Eldik R (2007) Dalton Trans 22:2295–2301

    Article  Google Scholar 

  45. Hao L, Zhang Y, Tan HW, Chen GJ (2007) Chem J Chin Univ Chin 28:1160–1164

    CAS  Google Scholar 

  46. Pavelka M, Lucas MFA, Russo N (2007) Chem Eur J 13:10108–10116

    Article  CAS  PubMed  Google Scholar 

  47. Pavelka M, Šimánek M, Šponer J, Burda JV (2006) J Phys Chem A 110:4795–4809

    Article  CAS  PubMed  Google Scholar 

  48. Hofmann A, Jaganyi D, Munro OQ, Liehr G, van Eldik R (2003) Inorg Chem 42:1688–1700

    Article  CAS  PubMed  Google Scholar 

  49. Zhu HJ, Ziegler T (2006) J Organomet Chem 691:4486–4497

    Article  CAS  Google Scholar 

  50. Tsipis AC, Sigalas MP (2002) J Mol Struct (Theochem) 584:235–248

    Article  CAS  Google Scholar 

  51. Zhu C, Raber J, Eriksson LA (2005) J Phys Chem B 109:12195–12205

    Article  CAS  PubMed  Google Scholar 

  52. Song T, Hu P (2006) J Chem Phys 125:091101

    Article  PubMed  CAS  Google Scholar 

  53. Jia M, Qu W, Yang Z, Chen G (2005) Int J Mod Phys B 19:2939–2949

    Article  CAS  Google Scholar 

  54. Zhang Y, Guo Z, You X-Z (2001) J Am Chem Soc 123:9378–9387

    Article  CAS  PubMed  Google Scholar 

  55. Lau JKC, Deubel DV (2006) J Chem Theory Comput 2:103–106

    Article  CAS  PubMed  Google Scholar 

  56. Dos Santos HF, Marcial BL, De Miranda CF, Costa LAS, De Almeida WB (2006) J Inorg Biochem 100:1594–1605

    Article  PubMed  CAS  Google Scholar 

  57. Lopes JF, Menezes VSD, Duarte HA, Rocha WR, De Almeida WB, Dos Santos HF (2006) J Phys Chem B 110:12047–12054

    Article  CAS  PubMed  Google Scholar 

  58. Costa LA, Hambley TW, Rocha WR, Almeida WB, Dos Santos HF (2006) Int J Quantum Chem 106:2129–2144

    Article  CAS  Google Scholar 

  59. Šebesta F, Burda JV (2017) J Inorg Biochem 172:100–109

    Article  PubMed  CAS  Google Scholar 

  60. Zimmermann T, Burda JV (2009) J Chem Phys 131:135101

    Article  PubMed  CAS  Google Scholar 

  61. Zeizinger M, Burda JV, Šponer J, Kapsa V, Leszczynski J (2001) J Phys Chem A 105:8086–8092

    Article  CAS  Google Scholar 

  62. Burda JV, Zeizinger M, Leszczynski J (2004) J Chem Phys 120:1253–1262

    Article  CAS  PubMed  Google Scholar 

  63. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  64. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  65. Miertus S, Tomasi J (1982) Chem Phys 65:239–245

    Article  CAS  Google Scholar 

  66. Glendening ED, Badenhoop K, Ree AE, Carpenter JE, Bohmann JA, Morales M, Weinhold F (2001). University of Wisconsin, Madison, Wisconsin 53706, Wisconsin

  67. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  68. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  69. Keith TA (2014) http://aim.tkgristmill.com. Accessed 30 Sept 2014

  70. Politzer P, Laurence PR, Jayasuriya K (1985) Environ Health Perspect 61:191–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murray et al (2011) WIREs Comput Mol Sci 1:153

    Article  CAS  Google Scholar 

  72. Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440

    Article  CAS  Google Scholar 

  73. Murray JS, Brinck T, Grice ME, Politzer P (1992) J Mol Struct Theor Chem 256:29–45

    Article  Google Scholar 

  74. Politzer P, Murray JS, Bulat FA (2010) J Mol Model 16:1731

    Article  CAS  PubMed  Google Scholar 

  75. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  76. Burda JV, Runenberg N, Pyykko P (1998) Chem Phys Lett 288:635–641

    Article  CAS  Google Scholar 

  77. Burda JV, Zeizinger M, Sponer J, Leszczynski J (2000) J Chem Phys 113:2224–2232

    Article  CAS  Google Scholar 

  78. Wertz DH (1980) J Am Chem Soc 102:5316–5322

    Article  CAS  Google Scholar 

  79. Cheng M-J, Nielsen RJ, Goddard Iii WA (2014) Chem Commun 50:10994–10996. https://doi.org/10.1039/C4CC03067B

    Article  CAS  Google Scholar 

  80. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) J Mol Biol 7:95–99

    Article  CAS  PubMed  Google Scholar 

  81. Chojnacki H, Kuduk-Jaworska J, Jaroszewicz I, Janski JJ (2009) Pol J Chem 83:1013–1024

    CAS  Google Scholar 

  82. Melchior A, Martínez JM, Pappalardo RR, Marcos ES (2013) J Chem Theory Comput 9:4562–4573

    Article  CAS  PubMed  Google Scholar 

  83. Burda JV, Sponer J, Leszczynski J (2000) J Biol Inorg Chem 5:178–188

    Article  CAS  PubMed  Google Scholar 

  84. Kozelka J, Chottard J-C (1990) Biophys Chem 35:165–178

    Article  CAS  PubMed  Google Scholar 

  85. Burda JV, Leszczynski J (2003) Inorg Chem 42:7162–7172

    Article  CAS  PubMed  Google Scholar 

  86. Spiegel K, Carloni P (2004) Abstr Pap Am Chem Soc 227:U1547–U1547

    Google Scholar 

  87. Zeizinger M, Burda JV, Leszczynski J (2004) Phys Chem Chem Phys 6:3585–3590

    Article  CAS  Google Scholar 

  88. Deubel DV (2005) Abstr Pap Am Chem Soc 230:U2131–U2131

    Google Scholar 

  89. Raber J, Zhu C, Eriksson LA (2005) J Phys Chem B 109:11006–11015

    Article  CAS  PubMed  Google Scholar 

  90. Pavelka M, Burda JV (2007) J Mol Model 13:367–379

    Article  CAS  PubMed  Google Scholar 

  91. Gkionis K, Mutter ST, Platts JA (2013) RSC Adv 3:4066–4073. https://doi.org/10.1039/C3RA23041D

    Article  CAS  Google Scholar 

  92. Zhu M, Zhou L (2015) Comput Theor Chem 1051:24–34. https://doi.org/10.1016/j.comptc.2014.10.036

    Article  CAS  Google Scholar 

  93. Ceron-Carrasco JP, Jacquemin D, Cauet E (2012) Phys Chem Chem Phys 14:12457–12464. https://doi.org/10.1039/C2CP40515F

    Article  CAS  PubMed  Google Scholar 

  94. Deubel DV (2006) J Am Chem Soc 128:1654–1663

    Article  CAS  PubMed  Google Scholar 

  95. Froeling CDW, Sheldrick WS (1997) Chem Commun 1737–1738. https://doi.org/10.1039/A702904G

  96. Djuran MI, Dimitrijevic DP, Milinkovic SU, Bugarčic ŽD (2002) Transit Met Chem 27:151–158

    Article  Google Scholar 

  97. Dos Santos HF, Paschoal D, Burda JV (2012) J Phys Chem A 116:11015–11024. https://doi.org/10.1021/jp307977p

    Article  PubMed  CAS  Google Scholar 

  98. Dos Santos HF, Paschoal D, Burda JV (2012) Chem Phys Lett 548:64–70. https://doi.org/10.1016/j.cplett.2012.07.080

    Article  CAS  Google Scholar 

  99. Bradáč O, Zimmermann T, Burda JV (2008) J Mol Model 14:705–716. https://doi.org/10.1007/s00894-008-0285-0

    Article  PubMed  CAS  Google Scholar 

  100. Futera Z, Platts JA, Burda JV (2012) J Comput Chem 33:2092–2101

    Article  CAS  PubMed  Google Scholar 

  101. Bancroft DP, Lepre CA, Lippard SJ (1990) J Am Chem Soc 112:6860–6871. https://doi.org/10.1021/ja00175a020

    Article  CAS  Google Scholar 

  102. Kleine M, Wolters D, Sheldrick WS (2003) J Inorg Biochem 97:354–363

    Article  CAS  PubMed  Google Scholar 

  103. Barnham KJ, Djuran MJ, Murdoch PDS, Sadler PJ (1994) J Chem Soc Chem Commun. https://doi.org/10.1039/C39940000721

    Article  Google Scholar 

  104. Djuran MI, Lempers ELM, Reedijk J (1991) Inorg Chem 30:2648–2652

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors (JVB and MM) are grateful for supporting this study to the Grant Agency of Czech Republic Project no 16-06240S. We would also like to acknowledge a generous access to computational facilities of the National Grid Infrastructure MetaCentrum, provided under the program ‘Projects of Large Infrastructure for Research, Development, and Innovations’ (LM2010005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav V. Burda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maixner, M., Dos Santos, H.F. & Burda, J.V. Formation of chelate structure between His-Met dipeptide and diaqua-cisplatin complex; DFT/PCM computational study. J Biol Inorg Chem 23, 363–376 (2018). https://doi.org/10.1007/s00775-018-1536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1536-x

Keywords

Navigation