JBIC Journal of Biological Inorganic Chemistry

, Volume 20, Issue 8, pp 1229–1238 | Cite as

Mitochondrial iron supply is required for the developmental pulse of ecdysone biosynthesis that initiates metamorphosis in Drosophila melanogaster

  • Jose V. Llorens
  • Christoph Metzendorf
  • Fanis Missirlis
  • Maria I. Lind
Original Paper


Synthesis of ecdysone, the key hormone that signals the termination of larval growth and the initiation of metamorphosis in insects, is carried out in the prothoracic gland by an array of iron-containing cytochrome P450s, encoded by the halloween genes. Interference, either with iron-sulfur cluster biogenesis in the prothoracic gland or with the ferredoxins that supply electrons for steroidogenesis, causes a block in ecdysone synthesis and developmental arrest in the third instar larval stage. Here we show that mutants in Drosophila mitoferrin (dmfrn), the gene encoding a mitochondrial carrier protein implicated in mitochondrial iron import, fail to grow and initiate metamorphosis under dietary iron depletion or when ferritin function is partially compromised. In mutant dmfrn larvae reared under iron replete conditions, the expression of halloween genes is increased and 20-hydroxyecdysone (20E), the active form of ecdysone, is synthesized. In contrast, addition of an iron chelator to the diet of mutant dmfrn larvae disrupts 20E synthesis. Dietary addition of 20E has little effect on the growth defects, but enables approximately one-third of the iron-deprived dmfrn larvae to successfully turn into pupae and, in a smaller percentage, into adults. This partial rescue is not observed with dietary supply of ecdysone’s precursor 7-dehydrocholesterol, a precursor in the ecdysone biosynthetic pathway. The findings reported here support the notion that a physiological supply of mitochondrial iron for the synthesis of iron-sulfur clusters and heme is required in the prothoracic glands of insect larvae for steroidogenesis. Furthermore, mitochondrial iron is also essential for normal larval growth.


Development Insect Mitochondria Mitoferrin Cholesterol 







Bathophenanthroline disulfonate


Drosophila frataxin




Drosophila mitoferrin


Ecdysone-induced protein 74EF


Ferric ammonium citrate


Ferritin 1 heavy chain homolog


Green fluorescent protein


Glycoprotein 93


Heat shock protein cognate 2


Yeast mitoferrins


RNA interference


Ribosomal protein L32







This work was supported from the Carl Trygger’s foundation (#CTS12:281 and #KF14:4), the Swedish Research Council (#621-2011-5155) to M.I.L. and from the Consejo Nacional de Ciencia y Tecnología of Mexico (#179835) to F.M.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.


  1. 1.
    Sheftel AD, Mason AB, Ponka P (2012) Biochim Biophys Acta 1820:161–187PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Crichton RR (2001) Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  3. 3.
    Lane DJ, Merlot AM, Huang ML, Bae DH, Jansson PJ, Sahni S, Kalinowski DS, Richardson DR (2015) Biochim Biophys Acta 1853:1130–1144CrossRefPubMedGoogle Scholar
  4. 4.
    Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ, Richter N, Stümpfig M, Srinivasan V, Stehling O, Mühlenhoff U (2015) Eur J Cell Biol 94:280–291CrossRefPubMedGoogle Scholar
  5. 5.
    Brazzolotto X, Pierrel F, Pelosi L (2014) Biochem J 460:79–89CrossRefPubMedGoogle Scholar
  6. 6.
    Foury F, Roganti T (2002) J Biol Chem 277:24475–24483CrossRefPubMedGoogle Scholar
  7. 7.
    Li L, Kaplan J (2004) J Biol Chem 279:33653–33661CrossRefPubMedGoogle Scholar
  8. 8.
    Muhlenhoff U, Stadler JA, Richhardt N, Seubert A, Eickhorst T, Schweyen RJ, Lill R, Wiesenberger G (2003) J Biol Chem 278:40612–40620CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang Y, Lyver ER, Knight SA, Lesuisse E, Dancis A (2005) J Biol Chem 280:19794–19807CrossRefPubMedGoogle Scholar
  10. 10.
    Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Nature 440:96–100CrossRefPubMedGoogle Scholar
  11. 11.
    Troadec MB, Warner D, Wallace J, Thomas K, Spangrude GJ, Phillips J, Khalimonchuk O, Paw BH, Ward DM, Kaplan J (2011) Blood 117:5494–5502PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Ren Y, Yang S, Tan G, Ye W, Liu D, Qian X, Ding Z, Zhong Y, Zhang J, Jiang D, Zhao Y, Lu J (2012) PLoS ONE 7:e29666PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J (2009) Mol Cell Biol 29:1007–1016PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Kunji ER (2004) FEBS Lett 564:239–244CrossRefPubMedGoogle Scholar
  15. 15.
    Froschauer EM, Schweyen RJ, Wiesenberger G (2009) Biochim Biophys Acta 1788:1044–1050CrossRefPubMedGoogle Scholar
  16. 16.
    Metzendorf C, Wu W, Lind MI (2009) Biochem J 421:463–471CrossRefPubMedGoogle Scholar
  17. 17.
    Metzendorf C, Lind MI (2010) BMC Dev Biol 10:68PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Navarro JA, Botella JA, Metzendorf C, Lind MI, Schneuwly S (2015) Free Radic Biol Med 85:71–82CrossRefPubMedGoogle Scholar
  19. 19.
    Massie HR, Aiello VR, Williams TR (1985) Mech Ageing Dev 29:215–220CrossRefPubMedGoogle Scholar
  20. 20.
    Palandri A, L’Hote D, Cohen-Tannoudji J, Tricoire H, Monnier V (2015) Hum Mol Genet 24:2615–2626CrossRefPubMedGoogle Scholar
  21. 21.
    Anderson PR, Kirby K, Hilliker AJ, Phillips JP (2005) Hum Mol Genet 14:3397–3405CrossRefPubMedGoogle Scholar
  22. 22.
    Llorens JV, Navarro JA, Martínez-Sebastián MJ, Baylies MK, Schneuwly S, Botella JA, Moltó MD (2007) FASEB J 21:333–344CrossRefPubMedGoogle Scholar
  23. 23.
    Uhrigshardt H, Rouault TA, Missirlis F (2013) J Biol Inorg Chem 18:441–449PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Sekeris CE, Karlson P (1964) Arch Biochem Biophys 105:483–487CrossRefPubMedGoogle Scholar
  25. 25.
    Ashburner M (1975) Sov J Dev Biol 5:97–107PubMedGoogle Scholar
  26. 26.
    Thummel CS (1995) Cell 83:871–877CrossRefPubMedGoogle Scholar
  27. 27.
    Ono H (2014) Dev Biol 391:32–42CrossRefPubMedGoogle Scholar
  28. 28.
    Mirth CK, Tang HY, Makohon-Moore SC, Salhadar S, Gokhale RH, Warner RD, Koyama T, Riddiford LM, Shingleton AW (2014) Proc Natl Acad Sci USA 111:7018–7023PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Sarraf-Zadeh L, Christen S, Sauer U, Cognigni P, Miguel-Aliaga I, Stocker H, Kohler K, Hafen E (2013) Dev Biol 381:97–106CrossRefPubMedGoogle Scholar
  30. 30.
    Gundner AL, Hahn I, Sendscheid O, Aberle H, Hoch M (2014) PLoS ONE 9:e97332PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Koyama T, Rodrigues MA, Athanasiadis A, Shingleton AW, Mirth CK (2014) Elife 3:e03091PubMedCentralCrossRefGoogle Scholar
  32. 32.
    Jaszczak JS, Wolpe JB, Dao AQ, Halme A (2015) Genetics 200:1219–1228CrossRefPubMedGoogle Scholar
  33. 33.
    Ohhara Y, Shimada-Niwa Y, Niwa R, Kayashima Y, Hayashi Y, Akagi K, Ueda H, Yamakawa-Kobayashi K, Kobayashi S (2015) Proc Natl Acad Sci USA 112:1452–1457PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Moeller ME, Danielsen ET, Herder R, O’Connor MB, Rewitz KF (2013) Development 140:4730–4739PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Parvy JP, Wang P, Garrido D, Maria A, Blais C, Poidevin M, Montagne J (2014) Development 141:3955–3965CrossRefPubMedGoogle Scholar
  36. 36.
    Warren JT, Petryk A, Marques G, Jarcho M, Parvy JP, Dauphin-Villemant C, O’Connor MB, Gilbert LI (2002) Proc Natl Acad Sci USA 99:11043–11048PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Rewitz KF, Rybczynski R, Warren JT, Gilbert LI (2006) Biochem Soc Trans 34:1256–1260CrossRefPubMedGoogle Scholar
  38. 38.
    Danielsen ET, Moeller ME, Dorry E, Komura-Kawa T, Fujimoto Y, Troelsen JT, Herder R, O’Connor MB, Niwa R, Rewitz KF (2014) PLoS Genet 10:e1004343PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ (2009) Proc Natl Acad Sci USA 106:5731–5736PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Yoshiyama T, Namiki T, Mita K, Kataoka H, Niwa R (2006) Development 133:2565–2574CrossRefPubMedGoogle Scholar
  41. 41.
    Lang M, Murat S, Clark AG, Couppil G, Blais C, Matzkin LM, Guittard E, Yoshiyama-Yanagawa T, Kataoka H, Niwa R, Lafont R, Dauphin-Villemant C, Orgogozo V (2012) Science 337:1658–1661CrossRefPubMedGoogle Scholar
  42. 42.
    Sandoval H, Yao CK, Chen K, Jaiswal M, Donti T, Lin YQ, Bayat V, Xiong B, Zhang K, David G, Charng WL, Yamamoto S, Duraine L, Graham BH, Bellen HJ (2014) eLife 3:e03558Google Scholar
  43. 43.
    Niwa YS, Niwa R (2014) Genes Genet Syst 89:27–34CrossRefPubMedGoogle Scholar
  44. 44.
    Di Cara F, King-Jones K (2013) Curr Top Dev Biol 105:1–36CrossRefPubMedGoogle Scholar
  45. 45.
    Ou Q, King-Jones K (2013) Curr Top Dev Biol 103:35–71CrossRefPubMedGoogle Scholar
  46. 46.
    Hill RJ, Billas IM, Bonneton F, Graham LD, Lawrence MC (2013) Annu Rev Entomol 58:251–271CrossRefPubMedGoogle Scholar
  47. 47.
    Yamanaka N, Rewitz KF, O’Connor MB (2013) Annu Rev Entomol 58:497–516PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Tennessen JM, Thummel CS (2011) Curr Biol 21:R750–757PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V (2014) Dev Biol 3:113–134Google Scholar
  50. 50.
    Missirlis F, Kosmidis S, Brody T, Mavrakis M, Holmberg S, Odenwald WF, Skoulakis EM, Rouault TA (2007) Genetics 177:89–100PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Gonzalez-Morales N, Mendoza-Ortiz MA, Blowes LM, Missirlis F, Riesgo-Escovar JR (2015) PLoS ONE 10:e0133499PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Gutierrez L, Zubow K, Nield J, Gambis A, Mollereau B, Lazaro FJ, Missirlis F (2013) Metallomics 5:997–1005CrossRefPubMedGoogle Scholar
  53. 53.
    Ryder E, Ashburner M, Bautista-Llacer R, Drummond J, Webster J, Johnson G, Morley T, Chan YS, Blows F, Coulson D, Reuter G, Baisch H, Apelt C, Kauk A, Rudolph T, Kube M, Klimm M, Nickel C, Szidonya J, Maroy P, Pal M, Rasmuson-Lestander A, Ekstrom K, Stocker H, Hugentobler C, Hafen E, Gubb D, Pflugfelder G, Dorner C, Mechler B, Schenkel H, Marhold J, Serras F, Corominas M, Punset A, Roote J, Russell S (2007) Genetics 177:615–629PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Morin X, Daneman R, Zavortink M, Chia W (2001) Proc Natl Acad Sci USA 98:15050–15055PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Missirlis F, Holmberg S, Georgieva T, Dunkov BC, Rouault TA, Law JH (2006) Proc Natl Acad Sci USA 103:5893–5898PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Mehta A, Deshpande A, Bettedi L, Missirlis F (2009) Biochimie 91:1331–1334CrossRefPubMedGoogle Scholar
  57. 57.
    Huang X, Suyama K, Buchanan J, Zhu AJ, Scott MP (2005) Development 132:5115–5124CrossRefPubMedGoogle Scholar
  58. 58.
    Colombani J, Bianchini L, Layalle S, Pondeville E, Dauphin-Villemant C, Antoniewski C, Carré C, Noselli S, Léopold P (2005) Science 310:667–670CrossRefPubMedGoogle Scholar
  59. 59.
    Froschauer EM, Rietzschel N, Hassler MR, Binder M, Schweyen RJ, Lill R, Mühlenhoff U, Wiesenberger G (2013) Biochem J 455:57–65CrossRefPubMedGoogle Scholar
  60. 60.
    Da-Re C, Franzolin E, Biscontin A, Piazzesi A, Pacchioni B, Gagliani MC, Mazzotta G, Tacchetti C, Zordan M, Zeviani M, Bernardi P, Bianchi V, De Pitta C, Costa R (2014) J Biol Chem 289:7448–7459PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Thummel CS, Burtis KC, Hogness DS (1990) Cell 61:101–111CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2015

Authors and Affiliations

  1. 1.Department of Comparative PhysiologyUppsala UniversityUppsalaSweden
  2. 2.Heidelberg University Biochemistry Center (BZH)University of HeidelbergHeidelbergGermany
  3. 3.Departamento de Fisiología, Biofísica y NeurocienciasCentro de Investigación y de Estudios AvanzadosMexico CityMexico

Personalised recommendations