Contribution to understand the biomineralization of bones



The goal is to propose a material scientific hypothesis for the atomic arrangement of calcium phosphates during the mineralization of bones.

Materials and methods

It was reached by the analysis of bones of healthy and osteoporotic rats using analytical transmission electron microscopic methods.


Electron diffraction patterns show hydroxyapatite (HAP) as dominant phase within the mineralized areas. In the electron energy loss spectrum, a double peak of the phosphorous L-edge seems to be a characteristic feature of the phosphorous binding in biological HAP. The hypothesis bases on periodic features on the collagen surface which agree with distances between oxygen atoms in the (200) plane of octacalcium phosphate (OCP). Bridge pillars for the HAP network consist of OCP coupled with a half unit cell on collagen by oxygen–hydrogen bridges. Possibly, the metastable OCP bridges are only a transient step, while the mineralization is starting. OCP and HAP couple by similar distances of calcium atoms in an interface close to the (100) planes of the OCP and the HAP network. To reach the perfect overlap of the equidistant Ca atoms, the HAP network has to be rotated by 22.5° around the a-axis, 11.5° around the c-axis of HAP, and 10.1° around an axis perpendicular to a and c.


A supercell based on this idea is able to explain the dominance of HAP in the electron diffraction patterns, the arrangement of the (002) lattice planes perpendicular to the collagen fiber axis, and sections of high-resolution TEM images.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Dorozhkin SV, Epple M (2009) Die biologische und medizinische Bedeutung von Calciumphosphaten. Angew Chem 114:3260–3277

    Article  Google Scholar 

  2. 2.

    Wang Y, Azaïs T, Robin M, Vallée A, Catania C, Legriel P, Pehau-Arnaudet G, Babenneau F, Giraud-Guille MM, Nassif N (2012) The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater 11:724–733.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Golub EE (2009) Role of matrix vesicles in biomineralization. Biochim Biophys Acta 1790:1592–1598

    CAS  Article  Google Scholar 

  4. 4.

    Bottini M, Mebarek S, Anderson KL, Strzelecka-Kiliszek A, Bozycki L, Sper-Simão AM, Bolean M, Ciancaglin P, Bandorowicz-Pikula J, Pikula S, Magne D, Volkmann N, Hanein D, Millán JL, Buchet R (2018) Matrix vesicles from chondrocytes and osteoblasts: their biogenesis, properties, functions and biomimetic models. Biochim Biophys Acta Gen Subj 1862:532–546

    CAS  Article  Google Scholar 

  5. 5.

    Cui L, Houston DA, Farquharson C, MacRae VE (2016) Characterisation of matrix vesicles in skeletal and soft tissue mineralization. Bone 87:147–158

    CAS  Article  Google Scholar 

  6. 6.

    Bleek K, Taubert A (2013) New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution. Acta Biomater 9:6283–6321.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Cölfen H, Mann S (2003) High-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42:2350–2365

    Article  Google Scholar 

  8. 8.

    Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufmann MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mat Sci Eng.

    Article  Google Scholar 

  9. 9.

    Weiner S, Wagner HD (1998) The material bone: structure mechanical function relations. Ann Rev Mater Sci 28:271–298

    CAS  Article  Google Scholar 

  10. 10.

    Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomater 10:3815–3826

    Article  Google Scholar 

  11. 11.

    Grandfield K, Vuong V, Schwarcz HP (2018) Ultrastructure of bone: hierarchical features from nanometer to micrometer scale revealed in focused ion beam sections in the TEM. Calcif Tissue Int 103:606–616.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Kourkoutis LF, Plitzko JM, Baumeister W (2012) Electron microscopy of biological materials at the nanometer scale. Annu Rev Mater Res 42:33–58

    CAS  Article  Google Scholar 

  13. 13.

    Thomas J, Gemming T (2014) Analytical transmission electron microscopy—an introduction for operators. Springer, Dordrecht, Heidelberg, New York, London (ISBN 978-94-017-8600-3)

  14. 14.

    Reznikov N, Shahar R, Weiner S (2014) Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization. Bone 50:93–104

    Article  Google Scholar 

  15. 15.

    Nalla RK, Porter AE, Daraio C, Minor AM, Radmilovic V, Stach EA, Tomsia AP, Ritchie RO (2005) Ultrastructural examination of dentin using focused ion-beam cross-sectioning and transmission electron microscopy. Micron 36:672–680

    CAS  Article  Google Scholar 

  16. 16.

    Heinemann S, Coradin T, Worch H, Wiesmann HP, Hanke T (2011) Possibilities and limitations of preparing silica/collagen/hydroxyapatite composite xerogels as load-bearing biomaterials. Compos Sci Technol 71:1873–1880

    CAS  Article  Google Scholar 

  17. 17.

    Rößler S, Heinemann C, Kruppke B, Wagner AS, Wenisch S, Wiesmann HP, Hanke T (2018) Manipulation of osteoclastogenesis: bioactive multiphasic silica/collagen composites and their effects of surface and degradation products. Mater Sci Eng C 93:265–276

    Article  Google Scholar 

  18. 18.

    Schwarcz HP (2015) The ultrastructure of bone as revealed in electron microscopy of ion-milled sections. Semin Cell Dev Biol 46:44–50

    Article  Google Scholar 

  19. 19.

    Kern C, Quade M, Ray S, Thomas J, Schumacher M, Gemming T, Gelinsky M, Alt V, Rohnke M (2018) Investigation of strontium transport and strontium quantification in cortical rat bone by time-of-flight secondary ion mass spectrometry. J R Soc Interface 16:20180638.

    CAS  Article  Google Scholar 

  20. 20.

    Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052 (cited by FIZ Karlsruhe, ICSD code 22059)

    CAS  Article  Google Scholar 

  21. 21.

    Brown PW, Martin RI (1999) An analysis of hydroxyapatite surface layer formation. J Phys Chem B 103:1671–1675

    CAS  Article  Google Scholar 

  22. 22.

    Brown WE (1962) Octacalcium phosphate and hydroxyapatite. Nature 196:1048–1050 (cited by FIZ Karlsruhe, ICSD code 27050)

    CAS  Article  Google Scholar 

  23. 23.

    Henning S (2006) Morphologie und Mikromechanik von Knochen und neuartigen, partiell resorbierbaren Knochenzementen. Diss Halle: urn:nbn:de:gbv:3-000012394.

  24. 24.

    McNally EA, Schwarcz HP, Botton GA, Arsenault AL (2012) A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS ONE 7:e29258

    CAS  Article  Google Scholar 

  25. 25.

    Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282

    Article  Google Scholar 

  26. 26.

    Rohnke M, Pfitzenreuter S, Mogwitz B, Henß A, Thomas J, Bieberstein D, Gemming T, Otto SK, Ray S, Schumacher M, Gelinsky M, Alt V (2017) Strontium release from Sr2+-loaded bone cements and dispersion in healthy and osteoporotic rat bone. J Control Release 262:159–169

    CAS  Article  Google Scholar 

  27. 27.

    Dorozhkin SV (2011) Calcium orthophosphates—occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter 1:121–164

    Article  Google Scholar 

  28. 28. EELS Atlas: Calcium Accessed 23 Oct 2018

  29. 29.

    Bearden JA, Burr AF (1967) Reevaluation of X-ray atomic energy levels. Rev Mod Phys 39:125–142

    CAS  Article  Google Scholar 

  30. 30.

    Schreiber TP, Wims AM (1981) A quantitative X-ray microanalysis thin film method using K-, L- and M-lines. Ultramicroscopy 6:323–334

    CAS  Article  Google Scholar 

  31. 31.

    Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE, Stevens MM (2012) The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. PNAS 109:14170–14175

    CAS  Article  Google Scholar 

  32. 32. EELS Atlas: Phosphorus. Accessed 11 Nov 2018

  33. 33.

    Kruse J, Leinweber P, Eckhardt KU, Godlinski F, Hu Y (2009) Phosphorus L2,3-edge XANES: overview of reference compounds. J Synchrotron Rad 16:247–259

    CAS  Article  Google Scholar 

  34. 34.

    Wess TJ (2008) Collagen fibrillar structure and hierarchies, chapter 3. In: Fratzl P (ed) Collagen structure and mechanics. Springer, New York (ISBN 978-0-387-73905-2)

  35. 35.

    Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    CAS  Article  Google Scholar 

  36. 36.

    Stadelmann P (1987) EMS—a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21:131–146 (used Java-EMS Version 6.6201U2011)

  37. 37.

    Su X, Sun K, Cui FZ, Landis WJ (2003) Organization of apatite crystals in human woven bone. Bone 32:150–162

    CAS  Article  Google Scholar 

  38. 38.

    Göbel C, Simon P, Buder J, Tlatlik H, Kniep R (2004) Phase formation and morphology of calcium phosphate-gelatine-composites grown by double diffusion technique: the influence of fluoride. J Mater Chem 14:2225–2230

    Article  Google Scholar 

  39. 39.

    Kruppke B, Heinemann C, Keroué A, Thomas J, Rößler S, Wiesmann HP, Gemming T, Worch H, Hanke T (2017) Calcite and hydroxyapatite gelatin composites as bone substitution material made by double migration technique. Cryst Growth Des 17:738–745

    CAS  Article  Google Scholar 

  40. 40.

    Rühl RR (2011) Zur Calciumphosphatpräzipitation mit Phosphoserin, Fetuin, Osteocalcin, Kollagen und in Vesikeln. Diss TU Dresden.

  41. 41.

    Brown WE, Smith JP, Lehr JP, Frazier AW (1962) Octacalcium phosphate and hydroxyapatite. Nature 196:1048–1055

    CAS  Article  Google Scholar 

  42. 42.

    Fernandez ME, Zorrilla-Cangas C, Garcia-Garcia R, Ascencio JA, Reyes-Gasga J (2003) New model for the hydroxyapatite-octacalcium phosphate interface. Acta Cryst B59:175–181

    CAS  Article  Google Scholar 

  43. 43.

    Rich A, Crick FHC (1961) The molecular structure of collagen. J Mol Biol 3:483–506

    CAS  Article  Google Scholar 

  44. 44.

    Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021

    CAS  Article  Google Scholar 

  45. 45.

    Weiner S (2006) Transient precursor strategy in mineral formation of bone. Bone 39:431–433

    CAS  Article  Google Scholar 

  46. 46.

    Lotsari A, Rajasekharan AK, Halvarsson M, Andersson M (2018) Transformation of amorphous calcium phosphate to bone-like apatite. Nat Commun 9:4170.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Ducy P, Desbois C, Boyce B, Pinerot G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    CAS  Article  Google Scholar 

  48. 48.

    Timpel M (2012) Einfluss von strontium auf die mikrostruktur von aluminium-silizium legierungen. Diss Berl. 1868-5781)

    Article  Google Scholar 

  49. 49.

    Christoffersen J, Christoffersen MR, Kolthoff N, Bärenholdt O (1997) Effect of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone 20:47–54

    CAS  Article  Google Scholar 

  50. 50.

    Tovani CB, Gloter A, Azaïs T, Selmane M, Ramos AP, Nassif N (2019) Formation of stable strontium-rich amorphous calcium phosphate: possible effects on bone mineral. Acta Biomater 92:315–324

    Article  Google Scholar 

Download references


The authors would like to thank Christine Kern from the Justus Liebig-University Giessen for provision of the rat bones and Sina Rößler (TU Dresden) for provision of silicate samples as well as Dina Bieberstein from the Leibniz-Institute for Solid State and Materials Research (IFW) Dresden for the careful electron-microscopic preparation of the cross-sections. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, Collaborative Research Centre Transregio 79—subprojects Z2, M3, and M5).

Author information



Corresponding author

Correspondence to Jürgen Thomas.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 853 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomas, J., Worch, H., Kruppke, B. et al. Contribution to understand the biomineralization of bones. J Bone Miner Metab 38, 456–468 (2020).

Download citation


  • Biomineralization
  • Atomic arrangement
  • Electron diffraction
  • EELS