Skip to main content

Advertisement

Log in

Study of the osteogenesis effect of icariside II and icaritin on canine bone marrow mesenchymal stem cells

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

This study aimed to identify the osteogenesis effect of icariside II (ICSII) and icaritin (ICT) in vitro. Bone marrow mesenchymal stem cells (BMSCs) were treated with ICSII and ICT in order to detect the proliferation and differentiation of BMSCs, the expression of the osteogenesis-related proteins with or without osteogenic medium (OM) and genes, Runt-related transcription factor 2 (Runx-2), osteocalcin (OCN), osteopontin (OPN), osterix, and basic fibroblast growth factor (bFGF), and the phosphorylation levels of mitogen-activated protein kinase (MAPK). We found that the optical density increased and alkaline phosphatase decreased after the BMSCs were treated with different concentrations of ICSII; however, ICT showed an opposing effect. The formation of calcium nodules was observed after the BMSCs were treated with ICSII and ICT. The expression level of osteogenesis-related proteins was enhanced following treatment with both ICSII or ICT, while the expression level of the osteogenesis-related genes Runx-2, OCN, OPN, osterix, and bFGF significantly increased with ICSII treatment (P < 0.05), and only Runx-2 and bFGF significantly increased (P < 0.01) with ICT. The expression of osteogenic differentiation-related proteins (except OPN) following treatment with ICSII + OM or ICT + OM was not notably increased. Both ICSII and ICT elevated the phosphorylation levels of MAPK/ERK, which was attenuated by GDC-0994 (an inhibitor of MAPK/ERK). Collectively, these data indicate that ICSII and ICT facilitate orientation osteogenic differentiation of BMSCs, which is most likely via the MAPK/ERK pathway. OM did not synergistically enhance the osteogenesis effect of ICSII and ICT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Diederichs S, Tuan RS (2014) Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor. Stem Cells Dev 23:1594–1610. https://doi.org/10.1089/scd.2013.0477 (in Eng)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Qin S, Zhou W, Liu S, Chen P, Wu H (2015) Icariin stimulates the proliferation of rat bone mesenchymal stem cells via ERK and p38 MAPK signaling. Int J Clin Exp Med 8:7125–7133 (in Eng)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cook DA, Fellgett SW, Pownall ME, O’Shea PJ, Genever PG (2014) Wnt-dependent osteogenic commitment of bone marrow stromal cells using a novel GSK3beta inhibitor. Stem Cell Res 12:415–427. https://doi.org/10.1016/j.scr.2013.10.002 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  4. Brown JA, Santra T, Owens P, Morrison AM, Barry F (2014) Primary cilium-associated genes mediate bone marrow stromal cell response to hypoxia. Stem Cell Res 13:284–299. https://doi.org/10.1016/j.scr.2014.06.006 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  5. Bionaz M, Monaco E, Wheeler MB (2015) Transcription adaptation during in vitro adipogenesis and osteogenesis of porcine mesenchymal stem cells: dynamics of pathways, biological processes, up-stream regulators, and gene networks. PLoS One 10:e0137644. https://doi.org/10.1371/journal.pone.0137644 (in Eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brennan MA, Renaud A, Amiaud J, Rojewski MT, Schrezenmeier H, Heymann D, Trichet V, Layrolle P (2014) Pre-clinical studies of bone regeneration with human bone marrow stromal cells and biphasic calcium phosphate. Stem Cell Res Ther 5:114. https://doi.org/10.1186/scrt504 (in Eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong Y, Long T, Wang C, Mirando AJ, Chen J, O’Keefe RJ, Hilton MJ (2014) NOTCH-mediated maintenance and expansion of human bone marrow stromal/stem cells: a technology designed for orthopedic regenerative medicine. Stem Cells Trans Med 3:1456–1466. https://doi.org/10.5966/sctm.2014-0034 (in Eng)

    Article  CAS  Google Scholar 

  8. Yao D, Xie XH, Wang XL, Wan C, Lee YW, Chen SH, Pei DQ, Wang YX, Li G, Qin L (2012) Icaritin, an exogenous phytomolecule, enhances osteogenesis but not angiogenesis − an in vitro efficacy study. PLoS One 7:e41264. https://doi.org/10.1371/journal.pone.0041264 (in Eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L, Chen B (2016) Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci 147:46–58. https://doi.org/10.1016/j.lfs.2016.01.024 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  10. Xu F, Ding Y, Guo Y, Liu B, Kou Z, Xiao W, Zhu J (2016) Anti-osteoporosis effect of Epimedium via an estrogen-like mechanism based on a system-level approach. J Ethnopharmacol 177:148–160. https://doi.org/10.1016/j.jep.2015.11.007 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  11. Zhou Z, Luo J, Wang J, Li L, Kong L (2015) Simultaneous enrichment and separation of flavonoids from Herba Epimedii by macroporous resins coupled with preparative chromatographic method. Nat Prod Res 29:185–188. https://doi.org/10.1080/14786419.2014.964704 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  12. Wu Y, Xia L, Zhou Y, Xu Y, Jiang X (2015) Icariin induces osteogenic differentiation of bone mesenchymal stem cells in a MAPK-dependent manner. Cell Prolif 48:375–384. https://doi.org/10.1111/cpr.12185 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  13. Xie YF, Wang MG, Chen KM, Shi WG, Zhou J, Gao YH (2015) Icariin enhances differentiation and maturation of rat calvarial osteoblasts in collagen hydrogel three-dimensional culture. Zhejiang Da Xue Xue Bao Yi Xue Ban 44:301–307 (in Chinese)

    CAS  PubMed  Google Scholar 

  14. Zhao BJ, Wang J, Song J, Wang CF, Yuan JR, Zhang L, Jiang J, Feng L, Jia XB (2016) Beneficial effects of a flavonoid fraction of herba epimedii on bone metabolism in ovariectomized rats. Planta Med 82:322–329. https://doi.org/10.1055/s-0035-1558294

    Article  CAS  PubMed  Google Scholar 

  15. Xie X, Pei F, Wang H, Tan Z, Yang Z, Kang P (2015) Icariin: a promising osteoinductive compound for repairing bone defect and osteonecrosis. J Biomater Appl 30:290–299. https://doi.org/10.1177/0885328215581551 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  16. Wu YQ, Xia LG, Zhou YN, Ma WD, Zhang N, Chang J, Lin KL, Xu YJ, Jiang XQ (2015) Evaluation of osteogenesis and angiogenesis of icariin loaded on micro/nano hybrid structured hydroxyapatite granules as a local drug delivery system for femoral defect repair. J Mater Chem B 3:4871–4883. https://doi.org/10.1039/c5tb00621j

    Article  CAS  Google Scholar 

  17. Wang QS, Zhang XC, Li RX, Sun JG, Su WH, Guo Y, Li H, Zhang XZ (2015) A comparative study of mechanical strain, icariin and combination stimulations on improving osteoinductive potential via NF-kappaB activation in osteoblast-like cells. Biomed Eng Online 14. https://doi.org/10.1186/s12938-015-0039-z

  18. Luo Z, Liu M, Sun L, Rui F (2015) Icariin recovers the osteogenic differentiation and bone formation of bone marrow stromal cells from a rat model of estrogen deficiency-induced osteoporosis. Mol Med Rep 12:382–388. https://doi.org/10.3892/mmr.2015.3369 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  19. Qin Z, Yin L, Wang K, Liu Q, Cheng W, Gao P, Sun K, Zhong M, Yu Z (2015) [Effects of Icariin promotion on proliferation and osteogenic differentiation of human periodontal ligament stem cells]. Hua Xi Kou Qiang Yi Xue Za Zhi 33:370–376 (in Chinese)

    PubMed  Google Scholar 

  20. Cui L, Sun E, Zhang Z, Tan X, Xu F, Jia X (2014) Metabolite profiles of epimedin C in rat plasma and bile by ultra-performance liquid chromatography coupled with quadrupole-TOF-MS. Biomed Chromatogr 28:1306–1312. https://doi.org/10.1002/bmc.3174

    Article  CAS  PubMed  Google Scholar 

  21. Zhu SC, Wang ZH, Li ZJ, Peng HL, Luo YY, Deng MY, Li RJ, Dai CW, Xu YX, Liu SF, Zhang GS (2015) Icaritin suppresses multiple myeloma, by inhibiting IL-6/JAK2/STAT3. Oncotarget 6:10460–10472

    PubMed  PubMed Central  Google Scholar 

  22. Cheng T, Yang J, Zhang T, Yang Y-S, Ding Y (2016) Optimized biotransformation of icariin into icariside II by beta-glucosidase from trichoderma viride using central composite design method. Biomed Res Int. https://doi.org/10.1155/2016/5936947

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhai Y, Chen K, Ge B, Ma H, Ming L, Cheng G (2011) The changes of iNOS and NO in the osteogenic differentiation process of rat bone marrow stromal cells promoted by icariside II. Yao Xue Xue Bao 46:383–389

    CAS  PubMed  Google Scholar 

  24. Wang J, Guo Z, Song D, Wu D, Wu Y, Liu S (2011) Effect of icariside II on the expression of osteoprotegerin in mouse osteoblasts. Chin J Endocrinol Metab 27:337–338

    CAS  Google Scholar 

  25. Zhai Y-K, Ge B-F, Chen K-M, Ma H-P, Ming L-G, Li Z-F (2010) Comparative study on the osteogenic differentiation of rat bone marrow stromal cells effected by icariin and icariside II. Zhong Yao Cai  33:1896–1900

    CAS  PubMed  Google Scholar 

  26. Luo G, Gu F, Zhang Y, Liu T, Guo P, Huang Y (2015) Icariside II promotes osteogenic differentiation of bone marrow stromal cells in beagle canine. Int J Clin Exp Pathol 8:4367–4377

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cai W-J, Huang J-H, Zhang S-Q, Wu B, Kapahi P, Zhang X-M, Shen Z-Y (2011) Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans. PloS One. 6 https://doi.org/10.1371/journal.pone.0028835

    Article  CAS  Google Scholar 

  28. Huang J, Yuan L, Wang X, Zhang T-L, Wang K (2007) Icaritin and its glycosides enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro. Life Sci 81:832–840. https://doi.org/10.1016/j.lfs.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  29. Chen SH, Wang XL, Xie XH, Zheng LZ, Yao D, Wang DP, Leng Y, Zhan G, Qin L (2012) Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Acta Biomater 8:3128–3137. https://doi.org/10.1016/j.actbio.2012.04.030

    Article  CAS  PubMed  Google Scholar 

  30. Xie X-H, Wang X-L, Zhang G, He Y-X, Wang X-H, Liu Z, He K, Peng J, Leng Y, Qin L (2010) Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Biomed Mater. 5 https://doi.org/10.1088/1748-6041/5/5/054109

    Article  Google Scholar 

  31. Ming L-G, Chen K-M, Xian CJ (2013) Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol 228:513–521. https://doi.org/10.1002/jcp.24158

    Article  CAS  PubMed  Google Scholar 

  32. Ref. 32 to be provide

  33. Huang S, Jia S, Liu G, Fang D, Zhang D (2013) Osteogenic differentiation of human umbilical cordderived mesenchymal stem cells promoted byoverexpression of osterix. Asian Biomed 7:743–752. https://doi.org/10.5372/1905-7415.0706.236

    Article  CAS  Google Scholar 

  34. Nishio Y, Dong Y, Paris M, O’Keefe RJ, Schwarz EM, Drissi H (2006) Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 372:62–70. https://doi.org/10.1016/j.gene.2005.12.022 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  35. Wang B, Huang S, Pan L, Jia S (2013) Enhancement of bone formation by genetically engineered human umbilical cord-derived mesenchymal stem cells expressing osterix. Oral Surg Oral Med Oral Pathol Oral Radiol 116:e221–e229. https://doi.org/10.1016/j.oooo.2011.12.024 (in Eng)

    Article  PubMed  Google Scholar 

  36. Vieira NM, Brandalise V, Zucconi E, Secco M, Strauss BE, Zatz M (2010) Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant 19:279–289. https://doi.org/10.3727/096368909x481764 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  37. Pockwinse SM, Rajgopal A, Young DW, Mujeeb KA, Nickerson J, Javed A, Redick S, Lian JB, van Wijnen AJ, Stein JL, Stein GS, Doxsey SJ (2006) Microtubule-dependent nuclear-cytoplasmic shuttling of Runx2. J Cell Physiol 206:354–362. https://doi.org/10.1002/jcp.20469 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Yang M, Lin L, Chen P, Ma KT, Zhou CY, Ao YF (2006) Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose–derived stem cells in vitro and in vivo. Calcif Tissue Int 79:169–178. https://doi.org/10.1007/s00223-006-0083-6 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  39. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764 (in Eng)

    Article  CAS  Google Scholar 

  40. Kawane T, Komori H, Liu W, Moriishi T, Miyazaki T, Mori M, Matsuo Y, Takada Y, Izumi S, Jiang Q, Nishimura R, Kawai Y, Komori T (2014) Dlx5 and mef2 regulate a novel runx2 enhancer for osteoblast-specific expression. J Bone Miner Res 29:1960–1969. https://doi.org/10.1002/jbmr.2240 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Z, Zhao M, Xiao G, Franceschi RT (2005) Gene transfer of the Runx2 transcription factor enhances osteogenic activity of bone marrow stromal cells in vitro and in vivo. Mol Ther 12:247–253. https://doi.org/10.1016/j.ymthe.2005.03.009 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  42. Liu W, Toyosawa S, Furuichi T, Kanatani N, Yoshida C, Liu Y, Himeno M, Narai S, Yamaguchi A, Komori T (2001) Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol 155:157–166. https://doi.org/10.1083/jcb.200105052 (in Eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kanatani N, Fujita T, Fukuyama R, Liu W, Yoshida CA, Moriishi T, Yamana K, Miyazaki T, Toyosawa S, Komori T (2006) Cbf beta regulates Runx2 function isoform-dependently in postnatal bone development. Dev Biol 296:48–61. https://doi.org/10.1016/j.ydbio.2006.03.039 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  44. Draenert GF, Draenert K, Tischer T (2009) Dose-dependent osteoinductive effects of bFGF in rabbits (in eng). Growth Factors 27:419–424. https://doi.org/10.3109/08977190903231075 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  45. Schnettler R, Alt V, Dingeldein E, Pfefferle HJ, Kilian O, Meyer C, Heiss C, Wenisch S (2003) Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants. Biomaterials 24:4603–4608 (in Eng)

    Article  CAS  Google Scholar 

  46. Simmons HA, Raisz LG (1991) Effects of acid and basic fibroblast growth factor and heparin on resorption of cultured fetal rat long bones. J Bone Miner Res 6:1301–1305. https://doi.org/10.1002/jbmr.5650061206 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  47. Chen M, Song K, Rao N, Huang M, Huang Z, Cao Y (2011) Roles of exogenously regulated bFGF expression in angiogenesis and bone regeneration in rat calvarial defects. Int J Mol Med 27:545–553. https://doi.org/10.3892/ijmm.2011.619 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  48. Guo X, Zheng Q, Kulbatski I, Yuan Q, Yang S, Shao Z, Wang H, Xiao B, Pan Z, Tang S (2006) Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds. Biomed Mater 1:93–99. https://doi.org/10.1088/1748-6041/1/3/001 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  49. Chabas D (2005) [Osteopontin, a multi-faceted molecule] (in French). Med Sci. 21:832–838 https://doi.org/10.1051/medsci/20052110832

    Article  Google Scholar 

  50. Kojima H, Uede T, Uemura T (2004) In vitro and in vivo effects of the overexpression of osteopontin on osteoblast differentiation using a recombinant adenoviral vector. J Biochem 136:377–386. https://doi.org/10.1093/jb/mvh136 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  51. Vairo F, Sperb-Ludwig F, Wilke M, Michellin-Tirelli K, Netto C, Neto EC, Schwartz I (2015) Osteopontin: a potential biomarker of Gaucher disease. Ann Hematol 94:1119–1125. https://doi.org/10.1007/s00277-015-2354-7 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  52. Cheng P, Alberts I, Li X (2013) The role of ERK1/2 in the regulation of proliferation and differentiation of astrocytes in developing brain. Int J Dev Neurosci 31:783–789

    Article  CAS  Google Scholar 

  53. Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66:105–143

    Article  CAS  Google Scholar 

  54. Lu Z, Xu S (2006) ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58:621–631

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Xu, B., Wang, W. et al. Study of the osteogenesis effect of icariside II and icaritin on canine bone marrow mesenchymal stem cells. J Bone Miner Metab 36, 668–678 (2018). https://doi.org/10.1007/s00774-017-0889-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-017-0889-5

Keywords

Navigation