Analysis of influence of duct geometrical parameters on pump jet propulsor hydrodynamic performance


To analyze the influence of duct geometrical parameters on hydrodynamic performance of pump jet propulsor, this paper presents a surface panel method for predicting performance of pump jet propulsor. And, moreover, a meshing method for blade, based on circular conical surface, is proposed. According to the actual situation of the internal flow of the pump jet propulsor, a tip leakage vortex model for the blades with flat top is also proposed. The hydrodynamic performance of pump jet propulsor under different conditions was calculated and compared with CFD results for the verification of the presented method. Then the influence of duct parameters on pump jet performance was analyzed from several aspects including performance index, surface pressure distribution, and flow velocity. The results show that variations of gap size, camber or attack angle of duct result in different hydrodynamic performance. Suitable selection of duct geometry can significantly increase the thrust efficiency of the pump jet propulsor, expand the range of effective work, and improve the loading characteristics of the blade.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28


\( \vec{V}_{0} \) :


\( S \) :

Boundary of the fluid

\( S_{b} \) :

Object surface

\( S_{\text{w}} \) :

Wake vortex surface

\( Q \) :

Arbitrary control point on the boundary surface

\( R_{PQ} \) :

Straight line distance between two points P and Q

\( \partial \varphi (Q)/\partial n_{Q} \) :

Normal derivative of the point velocity potential

E :

Green formula parameter

\( Q_{1} \) :

Point on the wake vortex surface

\( \overrightarrow {n} \) :

Unit normal vector of the corresponding object surface and points to the flow field

\( \Delta \varphi \) :

Velocity potential jump through the wake vortex surface

\( S_{\text{s}} \) :

Stator surface

\( S_{\text{d}} \) :

Duct surface

\( S_{\text{r}} \) :

Rotor surface

\( S_{\text{h}} \) :

Hub surface

\( S_{\text{ws}} \) :

Vortices of the stator surface

\( S_{\text{wd}} \) :

Vortices of the duct surface

\( S_{\text{wr}} \) :

Vortices of the hub surface

\( \overrightarrow {{\Omega_{\theta } }} \) :

Rotational angular velocity of the propeller

\( k \) :

The kth iterative operation

\( \vec{V}_{{{\text{sd}},{\text{rh}}}} \) :

Induced velocity generated by the rotor–hub system at the stator and duct surfaces

\( \vec{V}_{{{\text{rh}},{\text{sd}}}} \) :

Induced velocity generated by the rotor–hub system in the opposite direction of the stator and duct surfaces

\( K_{\text{T}} \) :

Thrust coefficient

\( K_{Q} \) :

Torque coefficient

\( K_{{{\text{T{-}all}}}}\) :

Total thrust coefficient

\( \eta \) :

Efficiency of the pump jet propulsor

\( D_{\text{r}} \) :

Maximum diameter of the rotor

\( J \) :

Advance speed coefficient

\( n \) :

Rotor speed

\( r_{\text{l}} ,r_{\text{t}} \) :

Radial positions

\( x_{\text{l}} ,x_{\text{t}} \) :

Axial positions

\( \alpha \) :

The conversion of circular table conical angle

\( x_{0} \) :

Vertex position

\( c \) :

The jth leaf section chord length

\( c_{\text{l}} \) :

The leading edge to the generatrix chord distance

\( x_{\text{r}} \) :

Trim value

\( \theta \) :

Side rake angle

\( d_{{\overline{OP} }} \) :

Distance between the arbitrary point P of the leaf section and the vertex O of the cone on the plane of the circular table

\( d_{{PB_{1} }} \) :

Point P in the circular mesa to yz plane arc distance

\( \beta_{0} \) :

The initial pitch angle of each vortex line

\( \beta \) :

Pitch angle

\( \beta_{\text{g}} \) :

The geometrical pitch angle of the rotor tip section

\( x_{T} \) :

T be the point of the axial coordinate

\( {\text{num}}_{T} \) :

The number of cells from the start point to the T point


  1. 1.

    Suryanarayana C, Satyanarayana B, Ramji K et al (2010) Experimental evaluation of pump jet propulsor for an axisymmetric body in wind tunnel. Int J Naval Archit Ocean Eng 2(1):24–33

    Article  Google Scholar 

  2. 2.

    Suryanarayana C, Satyanarayana B, Ramji K et al (2010) Cavitation studies on axi-symmetric under water body with pump jet propulsor in cavitation tunnel. Int J Naval Archit Ocean Eng 2(4):185–194

    Article  Google Scholar 

  3. 3.

    Pan G, Hu B, Wang P et al (2013) Numerical simulation of steady hydrodynamic performance of pump propeller. J Shanghai Jiaotong Univ 47(6):932–937

    Google Scholar 

  4. 4.

    Wang T, Zhou L (2004) Numerical simulation and mechanism study of the interaction between the gap flow and the main flow in a pumped propeller. In: Marine hydrodynamics conference

  5. 5.

    Fu J, Song Z, Wang Y et al (2016) Numerical prediction of hydrodynamic noise of pump propeller. Chin J Ship Mech 20(5):613–619

    Google Scholar 

  6. 6.

    Shi Y, Pan G, Wang P et al (2014) Numerical analysis of cavitation characteristics of pump propeller. J Shanghai Jiaotong Univ 48(8):1059–1064

    Google Scholar 

  7. 7.

    Lu L, Pan G, Sahoo PK (2016) CFD prediction and simulation of a pump jet propulsor. Int J Naval Archit Ocean Eng 8(1):110–116

    Article  Google Scholar 

  8. 8.

    Lu L, Pan G, Wei J et al (2016) Numerical simulation of tip gap impact on a pump jet propulsor. Int J Naval Archit Ocean Eng 8(3):219–227

    Article  Google Scholar 

  9. 9.

    Motallebi-Nejad M, Bakhtiari M, Ghassemi H et al (2017) Numerical analysis of ducted propeller and pumpjet propulsion system using periodic computational domain[J]. J Mar Sci Technol 3:1–15

    Google Scholar 

  10. 10.

    Hughes MJ, Kinnas SA (1991) An analysis method for a ducted propeller with pre-swirl stator blades. In: Proceedings of propellers & Shafting’91 symposium. SNAME, Virginia Beach, pp 15-1–15-8

  11. 11.

    Kawakita C, Hoshino T (1998) Hydrodynamic analysis of ducted propeller with stator in steady flow using a surface panel method, transactions of the West-Japan Society of Naval Architects, No. 96

  12. 12.

    Wang G, Yang C (1999) Hydrodynamic performance prediction of ducted propeller with stators. J Ship Mech 33:1

    Google Scholar 

  13. 13.

    Wang GQ, Liu XL (2007) Potential based panel method for prediction of steady and unsteady performances of ducted propeller with stators[J]. J Ship Mech 11(3):333–340

    Google Scholar 

  14. 14.

    Liu XL, Wang GQ (2006) A potential based panel method for prediction of steady performance of ducted propeller. J Ship Mech 10(3):26–35

    Google Scholar 

  15. 15.

    Su YM, Liu YB, Shen HL et al (2012) A new method for predicting the steady performance of ducted propeller with stators. J Ship Mech 9:1307

    Google Scholar 

  16. 16.

    You D, Wang M, Moin P et al (2007) Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-gap flow. J Fluid Mech 586(586):177–204

    Article  Google Scholar 

  17. 17.

    Zhang D, Shi W, Esch BPMV et al (2015) Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump. Comput Fluids 112(1):61–71

    Article  Google Scholar 

  18. 18.

    Su Y (1999) A study on design of marine propellers by lifting body theory. Yokohama National University, Yokohama

    Google Scholar 

  19. 19.

    Roy CJ, Heintzelman C, Roberts SJ (2007) Estimation of numerical error for 3D inviscid flows on Cartesian grids. In: 45th AIAA aerospace sciences meeting and exhibit. AIAA 2007-102

  20. 20.

    Moon IS, Kim KS, Lee CS (2002) Blade tip gap flow model for performance analysis of waterjet propulsors. In: IABEM 2002, International association for boundary element methods, UT Austin, TX, USA, 28–30 May 2002, pp 1–11

  21. 21.

    Yang Q, Wang Y (2016) Pumping propeller low noise design mechanism and design application. Huazhong University of Science and Technology Press, Huazhong

    Google Scholar 

Download references


The research was financially supported by the National Natural Science Foundation of China (Grant nos. 51679052, 51639004) and the Defense Industrial Technology Development Program (Grant no. JCKY2016604B001).

Author information



Corresponding author

Correspondence to Xin Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Weng, K., Guo, C. et al. Analysis of influence of duct geometrical parameters on pump jet propulsor hydrodynamic performance. J Mar Sci Technol 25, 640–657 (2020).

Download citation


  • Pump jet thrust
  • Duct geometrical parameters
  • Performance prediction
  • Surface panel method
  • Tip leakage vortex model