Skip to main content

Advertisement

Log in

A non-contact docking system for charging and recovering autonomous underwater vehicle

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

To improve the observation capability of the ocean, the combination of the static cabled ocean observatory network and the dynamic autonomous underwater vehicle has attracted more and more attention. In this paper, a non-contact docking system for the autonomous underwater vehicle is developed to combine the advantages of the cabled ocean observatory network and the autonomous underwater vehicle. The system includes both acoustic and optical navigation, underwater wireless communication, non-contact power transfer, and monitoring and controlling of the docking system. This docking system was verified by sea trials at depths of 50 and 105 m. The autonomous underwater vehicle successfully docked 11 times, during which non-contact power transfer and wireless communication were completed. The charging power reached 682 W, with a total efficiency of 78.5%, and the efficiency of the power transfer unit was 92%. The rate of wireless data transfer reached 3.1 MB/s. For the first time, this docking system has realized complete homing and docking navigation, wireless communication and charging in a water depth of more than 100 m, thus establishing a good foundation for the combination of the cabled ocean observatory network and autonomous underwater vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Barnes CR, Best M, Johnson FR, NEPTUNE Canada (2015) Installation and initial operation of the world’s first regional cabled ocean observatory. Springer, Berlin

    Book  Google Scholar 

  2. Podder T, Sibenac M, Bellingham J (2004) AUV docking system for sustainable science missions. In: IEEE international conference on robotics and automation, pp 4478–4485

  3. Nicholson J, Healey A (2008) The present state of autonomous underwater vehicle (AUV) applications and technologies. Mar Technol Soc J 42(1):44–51

    Article  Google Scholar 

  4. M MNA (2012) Design of a docking station for autonomous underwater vehicles (AUV) recharge and data download. Instrum Viewp 4(28):28–29

    Google Scholar 

  5. Skomal GB et al (2015) Subsurface observations of white shark Carcharodon carcharias predatory behaviour using an autonomous underwater vehicle. J Fish Biol 87(6SI):1293–1312

    Article  Google Scholar 

  6. Singh H et al (2001) Docking for an autonomous ocean sampling network. IEEE J Ocean Eng 26(4):498–514

    Article  Google Scholar 

  7. Fukasawa T, Noguchi T, Kawasaki T (2003) “MARINE BIRD”, a new experimental AUV with underwater docking and recharging system. Oceans 4:2195–2200

    Google Scholar 

  8. Lambiotte JC et al (2002) Results from mechanical docking tests of a Morpheus class AUV with a dock designed for an OEX class AUV. Oceans’02 MTS/IEEE 1:260–265

    Article  Google Scholar 

  9. Zhang T, Li D, Yang C (2017) Study on impact process of AUV underwater docking with a cone-shaped dock. Ocean Eng 130:176–187

    Article  Google Scholar 

  10. Stokey R, Purcell M, Forrester N (1997) A docking system for REMUS, an autonomous underwater vehicle. Oceans 2:1132–1136

    Google Scholar 

  11. Allen B et al (2006) Autonomous docking demonstrations with enhanced REMUS technology. Oceans-IEEE 1539

  12. Stokey R et al (2001) Enabling technologies for REMUS docking: an integral component of an autonomous ocean-sampling network. IEEE J Ocean Eng 26(4):487–497

    Article  Google Scholar 

  13. McEwen RS et al (2008) Docking control system for a 54-cm-diameter (21-in) AUV. IEEE J Ocean Eng 33(4):550–562

    Article  MathSciNet  Google Scholar 

  14. Hobson BW, McEwen RS (2007) The development and ocean testing of an AUV. Oceans 29:1–6

    Google Scholar 

  15. Coulson R, Lambiotte J, An E (2005) A modular docking system for 12.75-inch class AUVs—a funnel-type dock using inductive power transfer and a radio frequency ethernet bridge. Sea Technol 46(4):49–54

    Google Scholar 

  16. Brighenti A et al (1998) EURODOCKER—a universal docking-downloading-recharging system for AUVs: conceptual design results. Oceans’98 Conf Proc 3:1463–1467

    Google Scholar 

  17. Podder T, Sibenac M, Bellingham J (2004) AUV docking system for sustainable science missions. Robot Autom 5:4478–4484

    Google Scholar 

  18. Kojiya T et al (2004) Automatic power supply system to underwater vehicles utilizing non-contacting technology. Oceans’04 4:2341–2345

    Google Scholar 

  19. Han J et al (2006) High speed acoustic network and noncontact power supplier for seafloor geodetic observing robot system

  20. Han J et al (2007) Noncontact power supply for seafloor geodetic observing robot system. J Mar Sci Technol 12(3):183–189

    Article  Google Scholar 

  21. Feezor MD, Sorrell FY, Blankinship PR (2001) An interface system for autonomous undersea vehicles. IEEE J Ocean Eng 26(4):522–525

    Article  Google Scholar 

  22. Bradley AM et al (2001) Power systems for autonomous underwater vehicles. IEEE J Ocean Eng 26(4):526–538

    Article  Google Scholar 

  23. Li DJ et al (2015) Autonomous underwater vehicle docking system for cabled ocean observatory network. Ocean Eng 109:127–134

    Article  Google Scholar 

  24. Shi JG, Li DJ, Yang CJ (2014) Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications. Front Inf Technol Electron Eng 15(1):51–62

    Google Scholar 

  25. Lacovara P (2008) High-bandwidth underwater communications. Mar Technol Soc J 42(1):93–102

    Article  Google Scholar 

  26. B B (2004) A low power a, low cost, underwater optical communication system. Ridge 2000 Events

  27. Sozer EM, Stojanovic M, Proakis JG (2000) UAN—underwater acoustic network. IEEE J Ocean Eng 42(1):72–83

    Article  Google Scholar 

  28. Iizuka K (1963) An experimental study of the insulated dipole antenna immersed in a conducting medium. IEEE Trans Antennas Propag 11(5):518–532

    Article  Google Scholar 

  29. Siegel M, King R (1973) Electromagnetic propagation between antennas submerged in the ocean. IEEE Trans Antennas Propag 21(4):507–513

    Article  Google Scholar 

  30. Al-Shamma’a AI, Shaw A, Saman S (2004) Propagation of electromagnetic waves at MHz frequencies through seawater. IEEE Trans Antennas Propag 52(11):2843–2849

    Article  Google Scholar 

  31. Kazmierkowski MP, Moradewicz AJ (2012) Contactless energy transfer (CET) systems—a review. 2012 15th international power electronics and motion control conference (EPE/PEMC)

  32. Kim Y, Jin K (2012) A contactless power transfer system using a series–series–parallel resonant converter. Int J Electron 99:885–897

    Article  Google Scholar 

  33. Villa JL et al (2012) High-misalignment tolerant compensation topology for ICPT systems. IEEE Trans Ind Electron 59:945

    Article  Google Scholar 

  34. Wang CS, Covic G, Stielau OH (2004) Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Trans Ind Electron 51:148–157

    Article  Google Scholar 

  35. Rim CT, Cho GH (1990) Phasor transformation and its application to the DC/AC analyses of frequency phase-controlled series resonant converters (SRC). IEEE Trans Power Electron 5(2):201–211

    Article  Google Scholar 

  36. Vickery K (1998) Acoustic positioning systems a practical overview of current systems, pp 5–17

  37. Li D, Zhang T, Yang C (2016) Terminal underwater docking of an autonomous underwater vehicle using one camera and one light. Mar Technol Soc J 50(6):58–68

    Article  Google Scholar 

  38. Parvaresh A, Hassanzadeh S, Bordbar MH (2005) Statistical analysis of wave parameters in the north coast of the Persian Gulf. Ann Geophys 23(6):2031–2038

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National High Technology Research and Development Program of China (No. 2013AA09A414) and the National Natural Science Foundation of China (No. 41676089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 5957 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, R., Li, D., Zhang, T. et al. A non-contact docking system for charging and recovering autonomous underwater vehicle. J Mar Sci Technol 24, 902–916 (2019). https://doi.org/10.1007/s00773-018-0595-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-018-0595-6

Keywords

Navigation