Skip to main content
Log in

Das Schicksal des thorakoabdominellen Postdissektionsaortenaneurysmas: die histopathologische Narbe

The fate of thoracoabdominal post-dissection aortic aneurysms: the histopathological scar

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Neben hämodynamischen Veränderungen im Lumen der dissezierten Aorta, spielen Veränderungen der Wandintegrität eine entscheidende Rolle bei der Entstehung des thorakoabdominellen Postdissektionsaneurysmas.

Fragestellung

Evaluation der manifesten Degeneration der Media und der elastischen Fasern bei Postdissektionsaneurysmen.

Material und Methode

Histopathologische Begutachtung des Aortenwandgewebes von Patienten und Primaten mithilfe von HE- und Movat-Färbungen. Statistische Auswertung der Degenerationsmerkmale und Diskussion der aktuellen Literatur.

Ergebnisse

Diffuse Mediadegenerationen und Fibrosen werden ubiquitär in der aneurysmatischen Aorta gefunden. Signifikante Unterschiede lassen sich in allen aortalen Segmenten zwischen Patienten- und Primatenproben nachweisen, jedoch wird der größte Unterschied in den abdominellen Bereichen beobachtet. Von der Degeneration der elastischen Fasern ist die abdominelle Aorta am stärksten betroffen. In der Gruppe der Primaten wurden die höchsten Werte in den thorakalen Bereichen detektiert.

Schlussfolgerungen

Postdissektionsaneurysmen zeigen sich histopathologisch mit einer End-stage-Mediadegeneration und Vernarbung der aortalen Wand. Die kompromittierte Wandintegrität weist auf eine zelluläre Umwandlung der Gefäßwandschicht hin, die neben der veränderten Hämodynamik der Dissektion, die Wachstumsprogredienz der Aneurysmen begünstigen könnte. Zukünftige Untersuchungen der zugrunde liegenden zellulären Prozesse und ihre eventuelle Korrelation mit zirkulierenden Biomarkern könnten zu neuen Screening-Methoden führen.

Abstract

Background

In addition to changes in the intraluminal hemodynamics of a dissected aorta, changes in the integrity of the aortic wall also plays an important role in the development of thoracoabdominal post-dissection aneurysms.

Objective

Evaluation of manifest degeneration of the aortic tunica media and elastic fibers in post-dissection aneurysms.

Material and methods

Histopathological assessment of aortic wall tissue taken from patients and primates using HE and Movat staining. Statistical analysis of degeneration characteristics and discussion of the current literature.

Results

Diffuse degeneration of the tunica media and fibrosis were ubiquitously found in aneurysmatic aortic segments. Significant differences between humans and primate samples were also observed in every aortic segment; however, the biggest difference was detected in the abdominal aorta. Elastic fiber degradation also reached its peak in the abdominal aorta. In contrast, the highest values in the primate group were found in the thoracic region.

Conclusion

Post-dissection aneurysms histologically show an end-stage media degradation and scarring of the aortic wall. The compromised wall integrity implicates a cellular transformation of the vascular wall layers, which facilitates aneurysmatic growth progression in addition to the altered hemodynamics of the dissection. Future investigations of the underlying cellular processes and their possible correlation with circulating biomarkers could lead to new screening methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Bode-Jänisch S, Schmidt A, Günther D et al (2012) Aortic dissecting aneurysms—histopathological findings. Forensic Sci Int 214:13–17

    Article  Google Scholar 

  2. Coady MA, Rizzo JA, Hammond GL et al (1997) What is the appropriate size criterion for resection of thoracic aortic aneurysms? J Thorac Cardiovasc Surg 113:476–491 (discussion 489–491)

    Article  CAS  Google Scholar 

  3. Dalton ML, Gadson PF Jr., Wrenn RW et al (1997) Homocysteine signal cascade: production of phospholipids, activation of protein kinase C, and the induction of c‑fos and c‑myb in smooth muscle cells. Faseb J 11:703–711

    Article  CAS  Google Scholar 

  4. Elefteriades JA (2002) Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks. Ann Thorac Surg 74:S1877–1880 (discussion S1892–1878)

    Article  Google Scholar 

  5. Elefteriades JA, Sang A, Kuzmik G et al (2015) Guilt by association: paradigm for detecting a silent killer (thoracic aortic aneurysm). Open Heart 2:e169–e169

    Article  Google Scholar 

  6. Famularo M, Meyermann K, Lombardi JV (2017) Aneurysmal degeneration of type B aortic dissections after thoracic endovascular aortic repair: A systematic review. J Vasc Surg 66:924–930

    Article  Google Scholar 

  7. Frederick JR, Woo YJ (2012) Thoracoabdominal aortic aneurysm. Ann Cardiothorac Surg 1:277–285

    PubMed  PubMed Central  Google Scholar 

  8. Gadson PF Jr., Dalton ML, Patterson E et al (1997) Differential response of mesoderm- and neural crest-derived smooth muscle to TGF-beta1: regulation of c‑myb and alpha1 (I) procollagen genes. Exp Cell Res 230:169–180

    Article  CAS  Google Scholar 

  9. Halushka MK, Angelini A, Bartoloni G et al (2016) Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association For European Cardiovascular Pathology: II. Noninflammatory degenerative diseases—nomenclature and diagnostic criteria. Cardiovasc Pathol 25:247–257

    Article  Google Scholar 

  10. Hiratzka LF, Bakris GL, Beckman JA et al (2010) 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease. J Am Coll Cardiol 55:e27–e129

    Article  Google Scholar 

  11. Kessler V, Klopf J, Eilenberg W et al (2022) AAA revisited: a comprehensive review of risk factors, management, and hallmarks of pathogenesis. Biomedicines 10:94

    Article  Google Scholar 

  12. Kremer J, Preisner F, Dib B et al (2019) Aortic arch replacement with frozen elephant trunk technique—a single-center study. J Cardiothorac Surg 14:147

    Article  Google Scholar 

  13. Kuivaniemi H, Ryer EJ, Elmore JR et al (2015) Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther 13:975–987

    Article  CAS  Google Scholar 

  14. Leone A, Beckmann E, Martens A et al (2020) Total aortic arch replacement with frozen elephant trunk technique: results from two European institutes. J Thorac Cardiovasc Surg 159:1201–1211

    Article  Google Scholar 

  15. Mommertz G, Sigala F, Langer S et al (2008) Thoracoabdominal aortic aneurysm repair in patients with marfan syndrome. Eur J Vasc Endovasc Surg 35:181–186

    Article  CAS  Google Scholar 

  16. Osada H, Kyogoku M, Matsuo T et al (2018) Histopathological evaluation of aortic dissection: a comparison of congenital versus acquired aortic wall weakness. Interact CardioVasc Thorac Surg 27:277–283

    Article  Google Scholar 

  17. Rateri DL, Howatt DA, Moorleghen JJ et al (2011) Prolonged infusion of angiotensin II in apoE(−/−) mice promotes macrophage recruitment with continued expansion of abdominal aortic aneurysm. Am J Pathol 179:1542–1548

    Article  CAS  Google Scholar 

  18. Richards JM, Moores C, Nimmo A et al (2008) Thoracoabdominal aneurysm disease. Scott Med J 53:38–42

    Article  CAS  Google Scholar 

  19. Ruddy JM, Jones JA, Ikonomidis JS (2013) Pathophysiology of thoracic aortic aneurysm (TAA): Is it not one uniform aorta? Role of embryologic origin. Prog Cardiovasc Dis 56:68–73

    Article  Google Scholar 

  20. Ruddy JM, Jones JA, Spinale FG et al (2008) Regional heterogeneity within the aorta: relevance to aneurysm disease. J Thorac Cardiovasc Surg 136:1123–1130

    Article  Google Scholar 

  21. Saeyeldin AA, Velasquez CA, Mahmood SUB et al (2019) Thoracic aortic aneurysm: unlocking the “silent killer” secrets. Gen Thorac Cardiovasc Surg 67:1–11

    Article  Google Scholar 

  22. Schlatmann TJ, Becker AE (1977) Pathogenesis of dissecting aneurysm of aorta. Comparative histopathologic study of significance of medial changes. Am J Cardiol 39:21–26

    Article  CAS  Google Scholar 

  23. Shrestha M, Beckmann E, Krueger H et al (2015) The elephant trunk is freezing: the Hannover experience. J Thorac Cardiovasc Surg 149:1286–1293

    Article  Google Scholar 

  24. Spear R, Sobocinski J, Settembre N et al (2016) Early experience of endovascular repair of post-dissection aneurysms involving the thoraco-abdominal aorta and the arch. Eur J Vasc Endovasc Surg 51:488–497

    Article  CAS  Google Scholar 

  25. Tromp G, Kuivaniemi H, Hinterseher I et al (2010) Novel genetic mechanisms for aortic aneurysms. Curr Atheroscler Rep 12:259–266

    Article  CAS  Google Scholar 

  26. Weiss G, Santer D, Dumfarth J et al (2015) Evaluation of the downstream aorta after frozen elephant trunk repair for aortic dissections in terms of diameter and false lumen status. Eur J Cardio-thoracic Surg 49:118–124

    Article  Google Scholar 

  27. Wolinsky H, Glagov S (1969) Comparison of abdominal and thoracic aortic medial structure in mammals. Deviation of man from the usual pattern. Circ Res 25:677–686

    Article  CAS  Google Scholar 

  28. Zarins CK, Glagov S, Vesselinovitch D et al (1990) Aneurysm formation in experimental atherosclerosis: relationship to plaque evolution. J Vasc Surg 12:246–256

    Article  CAS  Google Scholar 

  29. Zhang W, Zhang S, Yan P et al (2020) A single-cell transcriptomic landscape of primate arterial aging. Nat Commun 11:2202–2202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Doukas.

Ethics declarations

Interessenkonflikt

P. Doukas, B. Hruschka, C. Bassett, M. Jacobs und A. Gombert geben an, dass kein Interessenkonflikt besteht.

Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doukas, P., Hruschka, B., Bassett, C. et al. Das Schicksal des thorakoabdominellen Postdissektionsaortenaneurysmas: die histopathologische Narbe. Gefässchirurgie 27, 246–252 (2022). https://doi.org/10.1007/s00772-022-00902-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-022-00902-4

Schlüsselwörter

Keywords

Navigation