Grundlagen der zellulären Mechanotransduktion

Principles of cellular mechanotransduction

Zusammenfassung

Lebende Zellen sind permanent mechanischen Impulsen aus der Umgebung ausgesetzt. Mechanotransduktion bezeichnet die Umwandlung der physikalischen Signale in intrazelluläre molekulare Prozesse. Diese Vorgänge sind maßgebend für die Steuerung der Zellfunktion (z. B. Proliferation, Differenzierung, Migration) unter physiologischen und pathologischen Bedingungen. Im Folgenden geben wir eine Übersicht über die molekularen Grundlagen der zellulären Mechanotransduktion.

Abstract

Living cells are permanently exposed to mechanical stimuli from the environment. Mechanotransduction refers to the conversion of physical signals into intracellular molecular processes. These processes are decisive for the control of cell function (e.g. proliferation, differentiation, migration) under physiological and pathological conditions. This article gives an overview of the molecular principles of cellular mechanotransduction.

This is a preview of subscription content, log in to check access.

Abb. 1

Literatur

  1. 1.

    Arribas SM, Hinek A, Gonzalez MC (2006) Elastic fibres and vascular structure in hypertension. Pharmacol Ther 111(3):771–791. https://doi.org/10.1016/j.pharmthera.2005.12.003

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Li C, Xu Q (2007) Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell Signal 19(5):881–891. https://doi.org/10.1016/j.cellsig.2007.01.004

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Sawada Y et al (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127(5):1015–1026. https://doi.org/10.1016/j.cell.2006.09.044

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Dupont S et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–184. https://doi.org/10.1038/nature10137

    CAS  Article  Google Scholar 

  5. 5.

    del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323(5914):638–641. https://doi.org/10.1126/science.1162912

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C (2007) Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 179(5):1043–1057. https://doi.org/10.1083/jcb.200703036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Martinac B (2014) The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim Biophys Acta 1838(2):682–691. https://doi.org/10.1016/j.bbamem.2013.07.015

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Seetharaman S, Etienne-Manneville S (2018) Integrin diversity brings specificity in mechanotransduction. Biol Cell 110(3):49–64. https://doi.org/10.1111/boc.201700060

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102. https://doi.org/10.1103/PhysRevLett.87.148102

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Naumanen P, Lappalainen P, Hotulainen P (2008) Mechanisms of actin stress fibre assembly. J Microsc 231(3):446–454. https://doi.org/10.1111/j.1365-2818.2008.02057.x

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Kim D‑H, Wirtz D (2015) Cytoskeletal tension induces the polarized architecture of the nucleus. Biomaterials 48:161–172. https://doi.org/10.1016/j.biomaterials.2015.01.023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326(5957):1208–1212. https://doi.org/10.1126/science.1175862

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492. https://doi.org/10.1038/nature08908

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Snider NT, Omary MB (2014) Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 15(3):163–177. https://doi.org/10.1038/nrm3753

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Nix DA, Beckerle MC (1997) Nuclear-cytoplasmic shuttling of the focal contact protein, zyxin: a potential mechanism for communication between sites of cell adhesion and the nucleus. J Cell Biol 138(5):1139–1147. https://doi.org/10.1083/jcb.138.5.1139

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Dong J‑M, Lau L‑S, Ng Y‑W, Lim L, Manser E (2009) Paxillin nuclear-cytoplasmic localization is regulated by phosphorylation of the LD4 motif: evidence that nuclear paxillin promotes cell proliferation. Biochem J 418(1):173–184. https://doi.org/10.1042/BJ20080170

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Guilak F, Tedrow JR, Burgkart R (2000) Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun 269(3):781–786. https://doi.org/10.1006/bbrc.2000.2360

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Booth-Gauthier EA, Alcoser TA, Yang G, Dahl KN (2012) Force-induced changes in subnuclear movement and rheology. Biophys J 103(12):2423–2431. https://doi.org/10.1016/j.bpj.2012.10.039

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Uzer G, Rubin CT, Rubin J (2016) Cell Mechanosensitivity is enabled by the LINC nuclear complex. Curr Mol Bio Rep 2(1):36–47. https://doi.org/10.1007/s40610-016-0032-8

    Article  Google Scholar 

  20. 20.

    Luxton GWG, Gomes ER, Folker ES, Vintinner E, Gundersen GG (2010) Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329(5994):956–959. https://doi.org/10.1126/science.1189072

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lombardi ML, Lammerding J (2011) Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function. Biochem Soc Trans 39(6):1729–1734. https://doi.org/10.1042/BST20110686

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Folker ES, Ostlund C, Luxton GWG, Worman HJ, Gundersen GG (2011) Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proc Natl Acad Sci U S A 108(1):131–136. https://doi.org/10.1073/pnas.1000824108

    Article  PubMed  Google Scholar 

  23. 23.

    Burke B, Roux KJ (2009) Nuclei take a position: managing nuclear location. Dev Cell 17(5):587–597. https://doi.org/10.1016/j.devcel.2009.10.018

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Cho S, Irianto J, Discher DE (2017) Mechanosensing by the nucleus: From pathways to scaling relationships. J Cell Biol 216(2):305–315. https://doi.org/10.1083/jcb.201610042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8(7):507–517. https://doi.org/10.1038/nrg2122

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Chappell DC, Varner SE, Nerem RM, Medford RM, Alexander RW (1998) Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ Res 82(5):532–539. https://doi.org/10.1161/01.res.82.5.532

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Orr AW, Sanders JM, Bevard M, Coleman E, Sarembock IJ, Schwartz MA (2005) The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a  potential role in atherosclerosis. J Cell Biol 169(1):191–202. https://doi.org/10.1083/jcb.200410073

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Shekhonin BV, Domogatsky SP, Idelson GL, Koteliansky VE, Rukosuev VS (1987) Relative distribution of fibronectin and type I, III, IV, V collagens in normal and atherosclerotic intima of human arteries. Atherosclerosis 67(1):9–16. https://doi.org/10.1016/0021-9150(87)90259-0

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Reeps C et al (2009) Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology 76(5):243–252. https://doi.org/10.1159/000228900

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Li H et al (2016) Downregulation of the yes-associated protein is associated with extracellular matrix disorders in ascending aortic aneurysms. Stem Cells Int. https://doi.org/10.1155/2016/6786184

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Tietze.

Ethics declarations

Interessenkonflikt

S. Tietze, A. Hofmann, S. Wolk und C. Reeps geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tietze, S., Hofmann, A., Wolk, S. et al. Grundlagen der zellulären Mechanotransduktion. Gefässchirurgie 25, 244–248 (2020). https://doi.org/10.1007/s00772-020-00648-x

Download citation

Schlüsselwörter

  • Mechanotransduktion
  • Zytoskelett
  • Fokale Adhäsionen
  • Mechanobiologie
  • Mechanosensor

Keywords

  • Mechanotransduction
  • Cytoskeleton
  • Focal adhesion
  • Mechanobiology
  • Mechanosensor