Estimation of the measurement uncertainty, including the contribution arising from sampling, of water quality parameters in surface waters of the Loire-Bretagne river basin, France

Abstract

A specific study was designed and carried out at the Loire River Basin in France, in order to estimate the measurement uncertainty, including the contribution of sampling. Following recommendations from the Eurachem Guide on Uncertainty arising from sampling, the duplicate method was selected. The study was conducted in 2017 under routine and operational conditions with the accredited laboratories selected by the Loire-Bretagne Water Agency. In overall, 35 monitoring stations were chosen for estimating the spatial variability, and among them 11 monitoring stations were singled out for estimating the temporal variability from April to December. To reduce both the number of analysis and the costs of this study, an unbalanced design was used. Finally, a robust analysis of variance was used to evaluate the measurement uncertainty by means of RANOVA2 software. For some parameters (e.g., calcium, dissolved organic carbon, nitrates, phosphates, suspended matter, metals), the expanded measurement uncertainty estimated using robust ANOVA was found to be lower than 20 % and was thus used to calculate the lower and upper confidence interval limits at 95 %. For parameters having an expanded measurement uncertainty greater than 20 % (e.g., most pesticides, chlorophyll a, biochemical oxygen demand, ammonium, nitrites, Kjeldahl nitrogen), the lower and upper confidence interval limits at 95 % were established using an alternative approach: the expanded uncertainty factor (FU) derived from log-transformed data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy

  2. 2.

    EURACHEM/CITAC (2019) Measurement uncertainty arising from sampling, 2nd edition, editors Ramsey MH (University of Sussex, UK) and Ellison SLR (LGC, UK)

  3. 3.

    Barbizzi S, Pati A (2008) Sampling in freshwater environments: suspended particle traps and variability in the final data. Appl Radiat Isot 66:1595–1598

    CAS  Article  Google Scholar 

  4. 4.

    Guigues N, Desenfant M, Lalere B, Vaslin-Reimann S, Eyl D, Mansuit P, Hance E (2016) Estimating sampling and analysis uncertainties to assess the fitness for purpose of a water quality monitoring network. Accred Qual Assur 21:101–112

    CAS  Article  Google Scholar 

  5. 5.

    Lardy-Fontan S, Brieudes V, Lalere B, Candido P, Couturier G, Budzinski H, Lavison-Bompard G (2016) For more reliable measurements of pharmaceuticals in the environment: overall measurement uncertainty estimation, QA/QC implementation and metrological considerations. A case study on the Seine river. Trends Anal Chemi 77:76–86

    CAS  Article  Google Scholar 

  6. 6.

    Wątor K, Kmiecik E, Tomaszewska B (2016) Assessing medicinal qualities of groundwater from the Busko-Zdrój area (Poland) using the probabilistic method. Environ Earth Sci 75:804

    Article  Google Scholar 

  7. 7.

    Clough R, Floor GH, Quétel CR, Milne A, Lohan MC, Worsfold PJ (2016) Measurement uncertainty associated with shipboard sample collection and filtration for the determination of the concentration of iron in seawater. Anal Methods 8:6711–6719

    CAS  Article  Google Scholar 

  8. 8.

    Rostron PD, Ramsey MH (2012) Cost effective, robust estimation of measurement uncertainty from sampling using unbalanced ANOVA. Accred Qual Assur 17:7–14

    Article  Google Scholar 

  9. 9.

    Analytical Methods Committee (2009) The duplicate method for the estimation of measurement uncertainty arising from sampling. AMC Technical Briefs 40, The Royal Society of Chemistry, London

  10. 10.

    Ramsey MH, Argyraki A, Thompson M (1995) Estimation of sampling bias between different protocols on contaminated land. Analyst 120:1353–1356

    CAS  Article  Google Scholar 

  11. 11.

    Ramsey MH, Argyraki A, Thompson M (1995) On the collaborative trial in sampling. Analyst 120:2309–2317

    CAS  Article  Google Scholar 

  12. 12.

    Argyraky A, Ramsey MH, Thompson M (1995) Proficiency testing in sampling: pilot study on contaminated land. Analyst 120:2799–2804

    Article  Google Scholar 

  13. 13.

    Analytical Methods Committee (2014). Unbalance robust ANOVA for the estimation of measurement uncertainty at reduced cost. AMC Technical Briefs 64, The Royal Society of Chemistry, London

  14. 14.

    Analytical Methods Committee (2001) Robust statistics: a method of coping with outliers. AMC Technical Briefs 6, The Royal Society of Chemistry, London

  15. 15.

    Ramsey MH, Ellison SLR (2015) Uncertainty factor: an alternative way to express measurement uncertainty in chemical measurement. Accred Qual Assur 20:153–155

    Article  Google Scholar 

  16. 16.

    Strub MP, Lepot B, Morin A (2009) Metrological aspects of collaborative field trials, including coping with unexpected events. Trends Anal Chem 28:245–261

    CAS  Article  Google Scholar 

  17. 17.

    Ghestem JP, Fisicaro P, Champion R (2009) Essai collaborative sur l’échantillonnage en eau souterraine Aquaref. (www.aquaref.fr). Accessed 7 Apr 2020

  18. 18.

    Botta F, Lepot B, Leoz-Garziandia E, Morin A (2012) Estimation of sampling uncertainty in lake-water monitoring in a collaborative field trial. Trends Anal Chem 36:176–184

    CAS  Article  Google Scholar 

  19. 19.

    Lepot B, Ferret C, Blanquet JP (2013) Essai collaboratif d’intercomparaison sur le prélèvement en rejet canalisé pour la mesure des micropolluants, Aquaref. (www.aquaref.fr). Accessed 7 Apr 2020

  20. 20.

    Schiavone S, Ghestem J-P, Coquery M (2011) Incertitudes liées à l’échantillonnage: exemple d’estimation pour la mesure des micropolluants dans les sédiments, Aquaref. (www.aquaref.fr). Accessed 7 Apr 2020

  21. 21.

    Ghestem JP (2009) Incertitudes liées à l’échantillonnage: exemples d’estimation sur eau de surface et eau souterraine, Aquaref. (www.aquaref.fr). Accessed 7 Apr 2020

  22. 22.

    Nehlig P (2010) Géologie du bassin de la Loire. Geosciences, BRGM 10-23

  23. 23.

    Dhivert E, Grosbois C, Courtin-Nomade A, Bourrain X, Desmet M (2016) Dynamics of metallic contaminants at a basin scale—spatial and temporal reconstruction from four sediment cores (Loire fluvial system, France). Sci Total Environ 541:1504–1515

    CAS  Article  Google Scholar 

  24. 24.

    Baalousha M, Stoll S, Motelica-Heino M, Guigues N, Braibant G, Huneau F, Le Coustumer P (2018) Suspended particulate matter determines physical speciation of Fe, Mn, and trace metals in surface waters of Loire watershed. Environ Sci Pollut Res 26:5251–5266

    Article  Google Scholar 

  25. 25.

    Magnusson B, Näykki T, Hovind H, Krysell M, Sahlin E (2017) Handbook for calculation of measurement uncertainty in environmental laboratories. Nordtest Report TR-537 (Ed 4)

  26. 26.

    Saporta G (2006) Probabilité, analyse des données statistiques. Edition Technip, Paris

    Google Scholar 

  27. 27.

    Volle M (1997) Analyse des données. Edition Economica

  28. 28.

    FD T90-523-1 (2008) Qualité de l’eau—guide de prélèvement pour le suivi de la qualité des eaux dans l’environnement, Partie 1: Prélèvement d’eau superficielle. Association Française de Normalisation (AFNOR), Paris

  29. 29.

    ISO 5667-3 (2013) Water quality—sampling—part 3: preservation and handling of water samples. International Organization for Standardization (ISO), Geneva

    Google Scholar 

  30. 30.

    Robust ANOVA programs available for balanced design (RANOVA) and both balanced and unbalanced designs (RANOVA2) from website of Royal Society of Chemistry. http://www.rsc.org/Membership/Networking/InterestGroups/Analytical/AMC/Software/. Accessed 7 Apr 2020

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nathalie Guigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guigues, N., Lepot, B., Desenfant, M. et al. Estimation of the measurement uncertainty, including the contribution arising from sampling, of water quality parameters in surface waters of the Loire-Bretagne river basin, France. Accred Qual Assur 25, 281–292 (2020). https://doi.org/10.1007/s00769-020-01436-6

Download citation

Keywords

  • Measurement uncertainty
  • Uncertainty arising from sampling
  • Water quality monitoring
  • Surface waters
  • Loire river basin