Skip to main content
Log in

Bildgebung des Prostatakarzinoms

Imaging of prostate cancer

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Das Prostatakarzinom (PCa) ist die häufigste lebensbedrohliche Tumorerkrankung des Mannes in der westlichen Hemisphäre. In Deutschland muss mit ca. 40.609 Erkrankungen jährlich gerechnet werden. Die Mortalität liegt bei ca. 10% der Erkrankten. Ziel der prätherapeutischen Diagnostik ist die möglichst exakte Bestimmung des lokalen Ausmaßes des Prostatakarzinoms bezüglich intraprostatischer Lokalisation, Kapseldurchbruch, Samenblaseninfiltration, Infiltration der neurovaskulären Bündel und evtl. der umgebenden Organe des kleinen Beckens, die Detektion einer lokoregionären Lymphknotenmetastasierung und ggf. einer Fernmetastasierung. Eine exakte prätherapeutische Diagnostik ist deshalb wichtig, weil die verfügbaren Behandlungsstrategien in strenger Abhängigkeit vom festgestellten klinischen Stadium der Tumorerkrankung und Risikoprofil festgelegt werden müssen. Die anatomische und funktionelle molekulare Bildgebung des Prostatakarzinoms wurde in den letzten Jahren erheblich weiterentwickelt. Der transrektale Ultraschall (TRUS) stellt in Verbindung mit der gezielten Biopsie der Prostata nach wie vor die am häufigsten eingesetzte bildgebende Methode der Prostata dar und ist die Basisbildgebung der Prostata bei der Abklärung des Prostatakarzinoms. In diagnostischen Problemfällen, z. B. bei negativer Stanzbiopsie und persistierendem Verdacht auf ein Prostatakarzinom, können die MRT/MRS- und die C-11-/F-18-Cholin-PET/CT-Bildgebung des Prostatakarzinoms häufig das Karzinom lokalisieren, die Beziehung zu den umgebenden intra- und extraprostatischen Strukturen und Organen darstellen und eine gezielte Rebiopsie ermöglichen. Das nodale Staging des Prostatakarzinoms ist ohne spezifische, derzeit klinisch noch nicht verfügbare lymphotrope Kontrastmittel wenig sensitiv und unzureichend spezifisch. Besondere Fortschritte wurden in der Bildgebung des Lokalrezidivs erzielt, das bei PSA-Werten >1 ng/ml durch die Kombination von kontrastmittelgestützter MRT und C-11-Cholin-PET/CT nachgewiesen werden kann.

Abstract

Prostatic carcinoma (PCa) is the most common life-threatening cancer in the Western world. In Germany about 40,609 new cases are expected per year. Mortality is 10%. The major goals of pretherapeutic imaging are determination of local intraprostatic tumor extent, presence of extracapsular extension (ECE), seminal vesicle invasion (SVI), invasion into neurovascular bundles and if so into surrounding tissues and organs. In addition, determination of presence and extent of nodal spread as well as distant metastases is required. Exact pretherapeutic staging is mandatory, because the choice of optimal tumor treatment is initiated in strict dependence on tumor stage and risk profile. Anatomic as well as functional molecular imaging of PCa has made significant progress in recent years. Transrectal ultrasonography (TRUS) is primarily used as the basic imaging test in PCa and to guide prostate biopsies. When prostate biopsies are negative but suspicion of PCa persists, MRI/MRS and C-11-/F-18-choline PET/CT may be helpful for localization of PCa, determining intraprostatic tumour extent – and if so – ECE, SVI, invasion into neurovascular bundles and to guide targeted biopsies. Lymphotrophic contrast agents are highly promising for accurate nodal staging of PCa, but are not yet available for clinical use. Thus, nodal staging with commonly available imaging modalities remains insufficiently sensitive and inadequately specific. Localization of local relapse of PCa with contrast-enhanced MRI and C-11-choline PET/CT has made significant progress and allows imaging of local recurrence of PCa in the majority of patients with a PSA >1 ng/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Albrecht S, Buchegger F, Soloviev D et al. (2007) 11C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34: 185–196

    Article  PubMed  Google Scholar 

  2. Boccon-Gibod L, Djavan WB, Hammerer P et al. (2004) Management of prostate-specific antigen relapse in prostate cancer: a European Consensus. Int J Clin Pract 58:382–390

    Article  PubMed  CAS  Google Scholar 

  3. Bott SR (2004) Management of recurrent disease after radical prostatectomy. Prostate Cancer Prostatic Dis 7:211–216

    Article  PubMed  CAS  Google Scholar 

  4. Carroll PR, Coakley FV, Kurhanewicz J (2006) Magnetic resonance imaging and spectroscopy of prostate cancer. Rev Urol 8:4–10

    Google Scholar 

  5. Cimitan M, Bortolus R, Morassut S et al. (2006) [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33:1387–1398

    Article  PubMed  Google Scholar 

  6. Coakley FV, Teh HS, Qayyum A et al. (2004) Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology 233:441–448

    Article  PubMed  Google Scholar 

  7. Jong I de, Pruim J, Elsinga P et al. (2002) Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 42:18–23

    Article  PubMed  Google Scholar 

  8. Jong IJ de, Pruim J, Elsinga PH et al. (2003) Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 44:331–335

    PubMed  Google Scholar 

  9. DeGrado TR, Coleman RE, Wang S et al. (2001) Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61:110–117

    PubMed  CAS  Google Scholar 

  10. Effert PJ, Bares R, Handt S et al. (1996) Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol 155:994–998

    Article  PubMed  CAS  Google Scholar 

  11. Farsad M, Schiavina R, Castellucci P et al. (2005) Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 46:1642–1649

    PubMed  CAS  Google Scholar 

  12. Frauscher F, Klauser A, Berger AP et al. (2003) The value of ultrasound (US) in the diagnosis of prostate cancer. Radiologe 43:455–463

    Article  PubMed  CAS  Google Scholar 

  13. Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995

    PubMed  CAS  Google Scholar 

  14. Harisinghani MG, Barentsz J, Hahn PF et al. (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  15. Harisinghani MG, Dixon WT, Saksena MA et al. (2004) MR lymphangiography: imaging strategies to optimize the imaging of lymph nodes with ferumoxtran-10. Radiographics 24:867–878

    Article  PubMed  Google Scholar 

  16. Heerschap A, Jager GJ, Graaf M van der (1997) In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anticancer Res 17:1455–1460

    PubMed  CAS  Google Scholar 

  17. Heinisch M, Dirisamer A, Loidl W et al. (2006) Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA <5 ng/ml? Mol Imaging Biol 8:43–48

    Article  PubMed  Google Scholar 

  18. Hricak H, Choyke PL, Eberhardt SC et al. (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243:28–53

    PubMed  Google Scholar 

  19. Jemal A, Murray T, Samuels A et al. (2005) Cancer statistics, 2005. CA Cancer J Clin 53:5–26

    Article  Google Scholar 

  20. Kotzerke J, Prang J, Neumaier B et al. (2000) Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27:1415–1419

    Article  PubMed  CAS  Google Scholar 

  21. Kotzerke J, Volkmer BG, Glatting G et al. (2003) Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 42:25–30

    PubMed  CAS  Google Scholar 

  22. Kuban DA, Levy LB, Potters L et al. (2006) Comparison of biochemical failure definitions for permanent prostate brachytherapy. Int J Radiat Oncol Biol Phys 65: 1487–1493

    Article  PubMed  CAS  Google Scholar 

  23. Kundra V (2006) Prostate cancer imaging. Semin Roentgenol 41:139–149

    Article  PubMed  Google Scholar 

  24. Kwee SA, Wei H, Sesterhenn I et al. (2006) Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 47:262–269

    PubMed  Google Scholar 

  25. Larson SM, Morris M, Gunther I et al. (2004) Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45:366–373

    PubMed  CAS  Google Scholar 

  26. Loch T (2004) Computergestützter transrektaler Ultraschall (C-TRUS) in der Diagnostik. Urologe A 43: 1377–1384

    Article  PubMed  CAS  Google Scholar 

  27. Loch T, Leuschner I, Genberg C et al. (2000) Weiterentwicklung des transrektalen Ultraschalls. Urologe A 39:341–317

    Article  PubMed  CAS  Google Scholar 

  28. Loch T, Leuschner I, Genberg C et al. (1999) Artificial neural network analysis (ANNA) of prostatic transrectal ultrasound. Prostate 39:198–204

    Article  PubMed  CAS  Google Scholar 

  29. Morakkabati-Spitz N, Bastian PJ, Meissner A et al. (2006) [MR techniques for noninvasive diagnosis of prostate cancer]. Urologe A 45:702–705

    Article  PubMed  CAS  Google Scholar 

  30. Nelson WG, Carter HB, DeWeese TL et al. (2004) Prostate cancer. In: Abeloff MD, Armitage JO, Niederhuber JE, Kastan MB, McKenna WG (eds) Clinical Oncology. Elsevier, Philadelphia, pp 2085–2148

  31. Oyama N, Miller TR, Dehdashti F et al. (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44:549–555

    PubMed  CAS  Google Scholar 

  32. Pathak AP, Gimi B, Glunde K et al. (2004) Molecular and functional imaging of cancer: advances in MRI and MRS. Methods Enzymol 386:3–60

    PubMed  CAS  Google Scholar 

  33. Picchio M, Messa C, Landoni C et al. (2003) Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 169:1337–1340

    Article  PubMed  CAS  Google Scholar 

  34. Pound CR, Partin AW, Eisenberger MA et al. (1999) Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281:1591–1597

    Article  PubMed  CAS  Google Scholar 

  35. Prando A, Kurhanewicz J, Borges AP et al. (2005) Prostatic biopsy directed with endorectal MR spectroscopic imaging findings in patients with elevated prostate specific antigen levels and prior negative biopsy findings: early experience. Radiology 236:903–910

    Article  PubMed  Google Scholar 

  36. Pucar D, Shukla-Dave A, Hricak H et al. (2005) Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy-initial experience. Radiology 236:545–553

    Article  PubMed  Google Scholar 

  37. Reske SN, Blumstein NM, Glatting G (2006) PET und PET/CT in der Rezidivdiagnostik des Prostata-Karzinoms [PET and PET/CT in relapsing prostate carcinoma]. Urologe A 45: 1240–1250

    Article  PubMed  CAS  Google Scholar 

  38. Reske SN, Blumstein NM, Glatting G (2006) Weiterentwicklung der PET und des PET/CT beim Prostatakarzinom [Advancement of PET and PET/CT in prostate carcinoma]. Urologe A 45:707–714

    Article  PubMed  CAS  Google Scholar 

  39. Reske SN, Blumstein NM, Neumaier B et al. (2006) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47:1249–1254

    PubMed  CAS  Google Scholar 

  40. Reske SN, Blumstein NM, Glatting G (2007) [11C] Choline PET/CT imaging in occult local relapse of prostate cancer after radical prostectomy. Eur Nucl Med Mol Imaging (zur Publikation angenommen)

  41. Rinnab L, Küfer R, Hautmann RE et al. (2005) Innovative concepts in early cancer detection and staging of localized prostate cancer. Urologe A 44:1262–1276

    Article  PubMed  CAS  Google Scholar 

  42. Ross R, Harisinghani M (2006) New clinical imaging modalities in prostate cancer. Hematol Oncol Clin North Am 20:811–830

    Article  PubMed  Google Scholar 

  43. Schmid DT, John H, Zweifel R et al. (2005) Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 235:623–628

    Article  PubMed  Google Scholar 

  44. Sella T, Schwartz LH, Swindle PW et al. (2004) Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology 231:379–385

    Article  PubMed  Google Scholar 

  45. Shreve PD, Grossman HB, Gross MD, Wahl RL (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 199:751–756

    PubMed  CAS  Google Scholar 

  46. Sutinen E, Nurmi M, Roivainen A et al. (2004) Kinetics of [11C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 31:317–324

    Article  PubMed  CAS  Google Scholar 

  47. Trabulsi EJ, Merriam WG, Gomella LG (2006) New imaging techniques in prostate cancer. Curr Urol Rep 7:175–180

    Article  PubMed  Google Scholar 

  48. Wachter S, Tomek S, Kurtaran A et al. (2006) Clinical impact of 11C-acetate positron emission tomography imaging and added value of image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol 24:2513–2519

    Article  PubMed  Google Scholar 

  49. Weissleder R, Elizondo G, Wittenberg J et al. (1990) Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175:494–498

    PubMed  CAS  Google Scholar 

  50. Yamaguchi T, Lee J, Uemura H et al. (2005) Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 32:742–748

    Article  PubMed  CAS  Google Scholar 

  51. Yoshida S, Nakagomi K, Goto S et al. (2005) 11C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol lnt 74:214–220

    Article  CAS  Google Scholar 

  52. Yu KK, Hricak H (2000) Imaging prostate cancer. Radiol Clin North Am 38:59–85

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.N. Reske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reske, S. Bildgebung des Prostatakarzinoms. Onkologe 13, 677–690 (2007). https://doi.org/10.1007/s00761-007-1224-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-007-1224-x

Schlüsselwörter

Keywords

Navigation