Skip to main content
Log in

Intracellular accumulation of amino acids increases synaptic potentials in rat hippocampal slices

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The application of high concentrations of taurine induces long-lasting potentiation of synaptic responses and axon excitability. This phenomenon seems to require the contribution of a transport system with a low affinity for taurine. The prototypic taurine transporter TauT (SLC6A6) was discarded by experimental evidence obtained in TauT-KO mice. The purpose of the present study was to determine whether the proton-coupled amino acid transporter 1 (PAT1; SLC36A1) which is a transport system with low affinity and high capacity for a great variety of amino acids including taurine, contributes to the taurine-induced synaptic potentiation. In rat hippocampal slices, the application of several amino acids (l- and d-alanine, l-glutamine, β-guanidinopropionic acid, glycine, l-histidine, l- and d-serine, sarcosine, l- and d-threonine) imitated the synaptic potentiation induced by taurine. The magnitude of the potentiation caused by some of these amino acids was even greater than that induced by taurine. By contrast, the application of other amino acids (l-arginine, betaine, l-leucine, l-methionine, l- and d-proline, and l-valine) did not induce potentiation. The behaviour of these different amino acids on synaptic potentiation is not compatible with a role of PAT1 in synaptic potentiation. There was a positive correlation between the accumulation of the different amino acids in the slice and the magnitude of synaptic potentiation induced by them. Some of the amino acids inducing synaptic potentiation, like taurine and l-threonine, also increased electrical resistance of the slice, whereas l-leucine did not modify this parameter. Modifications induced by either taurine or l-threonine in synaptic potentiation, slice resistance and amino acid accumulation were dependent on extracellular chloride concentration. These findings support the idea that the accumulation of amino acids throughout the action of transporters causes cell swelling enhancing the electrical resistance of the slice, which by itself could be sufficient to increase field synaptic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albiñana E, Sacristán S, Martín del Río R, Solís JM, Hernández-Guijo JM (2010) Modulation of calcium channels by taurine acting via a metabotropic-like glycine receptor. Cell Mol Neurobiol 30:1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Baird FE, Beattie KJ, Hyde AR, Ganapathy V, Rennie MJ, Taylor PM (2004) Bidirectional substrates fluxes through the system N (SNAT5) glutamine transporter may determine net glutamine flux in rat liver. J Physiol 559:367–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blume HW, Pittman QJ, Renaud LP (1981) Sensitivity of identified medial hypothalamic neurons to GABA, glycine and related amino acids; influence of bicuculline, picrotoxin and strychnine on synaptic inhibition. Brain Res 23:145–158

    Article  Google Scholar 

  • Boddum K, Jensen TP, Magloire V, Kristiansen U, Rusakov DA, Pavlov I, Walker MC (2016) Astrocytic GABA transporter activity modulates excitatory neurotransmission. Nat Comm 7:13572. https://doi.org/10.1038/ncomms13572

    Article  CAS  Google Scholar 

  • Boll M, Foltz M, Anderson CM, Oechsler C, Kottra G, Thwaites DT, Daniel H (2003) Substrate recognition by the mammalian proton-dependent amino acid transporter PAT1. Mol Membr Biol 20:261–269

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry FA, Schmitz D, Reimer RJ, Larsson P, Gray AT, Nicoll RA, Kavanaugh M, Edwards RH (2002) Glutamine uptake by neurons: interaction with system A transporters. J Neurosci 22:62–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chebabo SR, Hester MA, Jing J, Aitken PG, Somjen GG (1995) Interstitial space, electrical resistance and ion concentrations during hypotonia of rat hippocampal slices. J Physiol 487(3):685–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Fei YJ, Anderson CM, Wake KA, Miyauchi S, Huang W, Thwaites DT, Ganapathy V (2003) Structure, function and immunolocalization of a proton-coupled amino acid transporter (hPAT1) in the human intestinal cell line Caco-2. J Physiol 546(2):349–361

    Article  CAS  PubMed  Google Scholar 

  • Chepkova AN, Doreulee N, Yanovsky Y, Mukhopadhyay D, Haas HL, Sergeeva OA (2002) Long-lasting enhancement of corticostriatal neurotransmission by taurine. Eur J Neurosci 16:1523–1530

    Article  CAS  PubMed  Google Scholar 

  • Cubelos B, González-González IM, Giménez C, Zafra F (2005) Amino acid transporter SNAT5 localizes to glial cells in the rat brain. Glia 49:230–244

    Article  PubMed  Google Scholar 

  • del Olmo N, Bustamante J, Martín del Río R, Solís JM (2000) Taurine activates GABAA but not GABAB receptors in rat hippocampal CA1 area. Brain Res 864:298–307

    Article  PubMed  Google Scholar 

  • del Olmo N, Suárez LM, Orensanz LM, Suárez F, Bustamante J, Duarte JM, Martín del Río R, Solís JM (2004) Role of taurine uptake on the induction of long-term synaptic potentiation. Eur J Neurosci 19:1875–1886

    Article  PubMed  Google Scholar 

  • Demirci M, Ayata C, Dalkara T, Erdemli G, Onur R (1997) Monitoring cellular edema at single-neuron level by electrical resistance measurements. J Neurosci Meth 72:175–181

    Article  CAS  Google Scholar 

  • Dominy J, Thinschmidt JS, Peris J, Dawson R, Papke RL (2004) Taurine-induced long-lasting potentiation in the rat hippocampus shows a partial dissociation from total hippocampal taurine content and independence from activation of known transporters. J Neurochem 89:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Durkin MM, Gustafson EL, Smith KE, Borden LA, Hartig PR, Weinshank RL, Branchek TA (1995) Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. Mol Brain Res 3:7–21

    Article  Google Scholar 

  • Galarreta M, Bustamante J, Martín del Río R, Solís JM (1996) Taurine induces a long-lasting increase of synaptic efficacy and axon excitability in the hippocampus. J Neurosci 16:92–102

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277

    Article  CAS  PubMed  Google Scholar 

  • Jia F, Yue M, Chandra D, Keramidas A, Goldstein PA, Homanics GE, Harrison NL (2008) Taurine is a potent activator of extrasynaptic GABAA receptors in the thalamus. J Neurosci 28:106–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kersanté F, Rowley SCS, Pavlov I, Gutièrrez-Mecinas M, Semyanov A, Reul JMHM, Walker MC, Linthorst ACE (2013) A functional role for both γ-aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J Physiol 591(10):2429–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kletke O, Gisselmann G, May A, Hatt H, Sergeeva OA (2013) Partial agonism of taurine at gamma-containing native and recombinant GABAA receptors. PLoS One 8:e61733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolbaev S, Draguhn A (2008) Glutamine-induced membrane currents in cultured rat hippocampal neurons. Eur J Neurosci 28:535–545

    Article  PubMed  Google Scholar 

  • Lape R, Colquhoun D, Sivilotti LG (2008) On the nature of partial agonism in the nicotinic receptor superfamily. Nature 454:722–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerma J, Herranz AS, Herreras O, Abraira V, Martín del Río R (1986) In vivo determination of extracellular concentrations of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 384:145–155

    Article  CAS  PubMed  Google Scholar 

  • Liu QR, Lopez-Corcuera B, Nelson H, Mandiyan S, Nelson N (1992) Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain. Proc Natl Acad Sci USA 89:12145–12149

    Article  CAS  PubMed  Google Scholar 

  • Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA (1993) Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J Neurophysiol 70:1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Metzner L, Neubert K, Brandsch M (2006) Substrate specificity of the amino acid transporter PAT1. Amino Acids 31:111–117

    Article  CAS  PubMed  Google Scholar 

  • Mongin AA (2016) Volume-regulated anion channel—a frenemy within the brain. Pflugers Arch 468:421–441

    Article  CAS  PubMed  Google Scholar 

  • Mori M, Gahwiler BH, Gerber U (2002) Beta-alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro. J Physiol 539:191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi T, Sugawara M, Huang W, Martindale RG, Leibach FH, Ganapathy ME, Prasad PD, Ganapathy V (2001) Structure, function, and tissue expression pattern of human SN2, a subtype of the amino acid transport system N. Biochem Biphys Res Commun 281:1343–1348

    Article  CAS  Google Scholar 

  • Neves G, Cooke SF, Bliss TVP (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75

    Article  CAS  PubMed  Google Scholar 

  • Pace JR, Martin BM, Paul SM, Rogawski MA (1992) High concentrations of neutral amino acids activate NMDA receptor currents in rat hippocampal neurons. Neurosci Lett 141:97–100

    Article  CAS  PubMed  Google Scholar 

  • Pakerson KA, Sontheimer H (2003) Contribution of chloride channels to volume regulation of cortical astrocytes. Am J Physiol Cell Physiol 284:C1460–C1467

    Article  Google Scholar 

  • Perucho J, Gonzalo-Gobernado R, Bazán E, Casarejos MJ, Jiménez-Escrig A, Asensio MJ, Herranz AS (2015) Optimal excitation and emission wavelengths to analyze amino acids and optimize neurotransmitters quantification using precolumn OPA-derivatization by HPLC. Amino Acids 47:963–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pow DV, Sullivan RKP, Williams SM, Scott HL, Dodd PR, Finkelstein D (2005) Differential expression of the GABA transporters GAT-1 and GAT-3 in brains of rats, cats, monkeys and humans. Cell Tissue Res 320:379–392

    Article  CAS  PubMed  Google Scholar 

  • Rothman S (1985) The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci 5:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi T, Kuno M, Kawasaki K (1999) Disparity of cell swelling and rapid neuronal death by excitotoxic insults in rat hippocampal slice cultures. Neurosci Lett 274:135–138

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Sánchez-Olea R, Morán J, Pasantes-Morales H (1991) Hyposmolarity-induced taurine release in cerebellar granule cells is associated with diffusion and not with high-affinity transport. J Neurosci Res 30:661–665

    Article  CAS  PubMed  Google Scholar 

  • Sergeeva OA, Chepkova AN, Doreulee N, Eriksson KS, Poelchen W, Mönnighoff Heller-Stilb B, Warskulat U, Häussinger D, Haas HL (2003) Taurine-induced long-lasting enhancement of synaptic transmission in mice: role of transporters. J Physiol 550(3):911–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solís JM, Herranz AS, Herreras O, Lerma J, Martín del Río R (1988) Does taurine act as an osmoregulatory substance in the rat brain? Neurosci Lett 91:53–58

    Article  PubMed  Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    Article  CAS  Google Scholar 

  • Suárez LM, Solís JM (2006) Taurine potentiates presynaptic NMDA receptors in hippocampal Schaffer collateral axons. Eur J Neurosci 24:405–418

    Article  PubMed  Google Scholar 

  • Suárez LM, Bustamante J, Orensanz LM, Martin del Río R, Solís JM (2014) Cooperation of taurine uptake and dopamine D1 receptor activation facilitates the induction of protein synthesis-dependent late LTP. Neuropharmacology 79:101–111

    Article  CAS  PubMed  Google Scholar 

  • Suárez LM, Muñoz MD, González JC, Bustamante J, Martín del Río R, Solís JM (2016) The taurine transporter substrate guanidinoethyl sulfonate mimics the action of taurine on long-term synaptic potentiation. Amino Acids 48:2647–2656

    Article  CAS  PubMed  Google Scholar 

  • Sved DW, Godsey JL, Ledyard SL, Mahoney AP, Stetson PL, Ho S, Myers NR, Resnis P, Renwick AG (2007) Absorption, tissue distribution, metabolism and elimination of taurine given orally to rats. Amino Acids 32:459–466

    Article  CAS  PubMed  Google Scholar 

  • Thondorf I, Voigt V, Schäfer S, Gebauer S, Zebisch K, Laug L, Brandsch M (2011) Three-dimensional quantitative structure-activity relationship analyses of substrates of the human proton-coupled amino acid transporter 1 (hPAT1). Bioorg Med Chem 19:6409–6418

    Article  CAS  PubMed  Google Scholar 

  • Thwaites DT, Anderson CMH (2011) The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br J Pharmacol 164:1802–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traynelis SF, Dingledine R (1989) Role of extracellular space in hyperosmotic suppression of potassium-induced electrographic seizures. J Neurophysiol 61:927–938

    Article  CAS  PubMed  Google Scholar 

  • Ueki I, Roman HB, Hirschberger LL, Junior C, Stipanuk MH (2012) Extrahepatic tissues compensate for loss of hepatic taurine synthesis in mice with liver-specific knockout of cysteine dioxigenase. Am J Physiol Endocrinol Metab 302:E1292–E1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volianskis A, France G, Jensen MS, Bortolotto ZA, Jane DE, Collingridge GL (2015) Long-term potentiation and the role of N-methyl-d-aspartate receptors. Brain Res 1621:5–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warskulat U, Heller-Stilb B, Oermann E, Zilles K, Haas H, Lang F, Häussinger D (2007) Phenotype of the taurine transporter knockout mouse. Methods Enzymol 428:439–458

    Article  CAS  PubMed  Google Scholar 

  • Wigstrom H, Gustafsson B (1985) Facilitation of hippocampal long lasting potentiation by GABA antagonists. Acta Physiol Scand 125:159–172

    Article  CAS  PubMed  Google Scholar 

  • Wreden CC, Johnson J, Tran C, Seal RP, Copenhagen DR, Reimer RJ, Edwards RH (2003) The H+-coupled electrogenic lysosomal amino acid transporter LYAAT1 localizes to the axon and plasma membrane of hippocampal neurons. J Neurosci 23:1265–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zomot E, Bendahan A, Quick M, Zhao Y, Javitch JA, Kanner BI (2007) Mechanism of chloride interaction with neurotransmitter: sodium symporters. Nature 449:726–730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from “Instituto de Salud Carlos III” (PIU081067) to JMS. We thank Amparo Latorre, María José Asensio and José Barbado for technical assistance.

Funding

This work was supported by a grant from “Instituto de Salud Carlos III” (PIU081067) to J.M. Solís.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Solís.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The care and use of animals was carried out following the European Communities Council Directive (86/609/ECC). Protocols were approved by “Comité Ético de Bienestar Animal” at Hospital Universitario Ramón y Cajal (animal facilities ES280790000092).

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Handling Editor: P. Rondard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luengo, J.G., Muñoz, MD., Álvarez-Merz, I. et al. Intracellular accumulation of amino acids increases synaptic potentials in rat hippocampal slices. Amino Acids 51, 1337–1351 (2019). https://doi.org/10.1007/s00726-019-02771-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-019-02771-w

Keywords

Navigation