Skip to main content

Advertisement

Log in

A comprehensive toxicity evaluation of novel amino acid-modified magnetic ferrofluids for magnetic resonance imaging

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Stem cells have been widely exploited as remedial agents in regenerative medicine due to its tremendous potential in treatment of various debilitating diseases. In spite of this fact, there is need of a reliable, clinically applicable cell tracker for deciphering the homing and distribution of stem cells post-transplantation. Researchers have proposed the use of superparamagnetic magnetite (Fe3O4) nanoparticles for in vivo and in vitro tracking and imaging of stem cells. However, there is not much understanding of the chemical coatings on the nanoparticles, which is very important for the sustainability of stem cells in biological system. For any biomedical applications, the surface properties and the core structure of nanoparticles play a significant role. This study reports surface modification of magnetic Fe3O4 nanofluid with biocompatible amino acids viz., arginine and histidine to maintain colloidal stability at neutral pH, impart least disruption when encountered with the biological system and allow labeling with mesenchymal stem cells (MSCs). The size of amino acids-modified magnetic nanoferrofluid (AA@MNFs) was restricted to 15–25 nm for enhanced uptake in stem cells. In vitro cytotoxicity profile of stem cells labeled AA@MNFs was estimated using various assays like MTT, LDH and AO/EtBr followed by detailed pre-clinical toxicity assessment of AA@MNFs which illustrated least toxicity effects in major tissues of the animals. In vitro MRI scans of the stem cells labeled AA@MNFs confirmed the suitability of the reported ferrofluids for the use as MR contrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agudelo CA, Tachibana Y, Noboru T, Iida H, Yamaoka T (2011) Long-term in vivo magnetic resonance imaging tracking of endothelial progenitor cells transplanted in rat ischemic limbs and their angiogenic potential. Tissue Eng Part A 17:2079–2089

    Article  CAS  PubMed  Google Scholar 

  • Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, Eckey T, Henze E, Zeiher AM, Dimmeler S (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107:2134–2139

    Article  PubMed  Google Scholar 

  • Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA (2005) A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 18:383–389

    Article  CAS  PubMed  Google Scholar 

  • Azadniv M, Dugger K, Bowers WJ, Weaver C, Crispe IN (2007) Imaging CD8+ T cell dynamics in vivo using a transgenic luciferase reporter. Int Immunol 19:1165–1173

    Article  CAS  PubMed  Google Scholar 

  • Bagherpour AR, Kashanian F, Ebrahimi SS, Habibi-Rezaei M (2018) l-arginine modified magnetic nanoparticles: green synthesis and characterization. Nanotechnology 29:075706

    Article  CAS  PubMed  Google Scholar 

  • Barick KC, Aslam M, Prasad PV, Dravid VP, Bahadur D (2009) Nanoscale assembly of amine-functionalized colloidal iron oxide. J Magn Magn Mater 321:1529–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry CC, Wells S, Charles S, Aitchison G, Curtis AS (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25:5405–5413

    Article  CAS  PubMed  Google Scholar 

  • Bos C, Delmas Y, Desmouliere A, Solanilla A, Hauger O, Grosset C, Dubus I, Ivanovic Z, Rosenbaum J, Charbord P, Combe C (2004) In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789

    Article  PubMed  Google Scholar 

  • Corot C, Warlin D (2013) Superparamagnetic iron oxide nanoparticles for MRI: contrast media pharmaceutical company R&D perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:411–422

    Article  CAS  PubMed  Google Scholar 

  • Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2012) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Korean Chem Soc 33:3957–3962

    Article  CAS  Google Scholar 

  • Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ (2014) The life and fate of mesenchymal stem cells. Front Immunol 5:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Dakdouki MH, El-Boubbou K, Zhu DC, Huang X (2011) A simple method for the synthesis of hyaluronic acid coated magnetic nanoparticles for highly efficient cell labelling and in vivo imaging. RSC Adv 1:1449–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Kedziorek D, Kraitchman DL (2010) Recent developments and future challenges on imaging for stem cell research. J Cardiovasc Transl Res 3:24–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Gad SC, Chengelis CP (1988) Acute toxicology testing perspectives and horizons. The Telford Press, Caldwell, NJ

    Book  Google Scholar 

  • Green MD, Snoeck HW (2011) Novel approaches for immune reconstitution and adaptive immune modeling with human pluripotent stem cells. BMC Med 9:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Curtis AS (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15:493–496

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202

    Article  PubMed  Google Scholar 

  • Hoonjan M, Sachdeva G, Chandra S, Kharkar PS, Sahu N, Bhatt P (2018) Investigation of HSA as a biocompatible coating material for arsenic trioxide nanoparticles. Nanoscale 10:8031–8041

    Article  CAS  PubMed  Google Scholar 

  • Horie M, Kato H, Fujita K, Endoh S, Iwahashi H (2011) In vitro evaluation of cellular response induced by manufactured nanoparticles. Chem Res Toxicol 25:605–619

    Article  CAS  PubMed  Google Scholar 

  • Hoskins C, Cuschieri A, Wang L (2012) The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism. J Nanobiotechnol 10:15

    Article  CAS  Google Scholar 

  • Huang X, Teng X, Chen D, Tang F, He J (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31:438–448

    Article  CAS  PubMed  Google Scholar 

  • Isaksson K, Åkerberg D, Posaric-Bauden M, Andersson R, Tingstedt B (2014) In vivo toxicity and biodistribution of intraperitoneal and intravenous poly-l-lysine and poly-l-lysine/poly-L-glutamate in rats. J Mater Sci Mater Med 25:1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandpal ND, Sah N, Loshali R, Joshi R, Prasad J (2014) Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J Sci Ind Res 73:87–90

    CAS  Google Scholar 

  • Kavitha A, Parambath A (2018) Polyacrylamide and related polymers. In: Engineering of biomaterials for drug delivery systems: beyond polyethylene glycol, 1st Edn, Elsevier Science, pp 229–253.

  • Korchinski DJ, Taha M, Yang R, Nathoo N, Dunn JF (2015) Iron oxide as an Mri contrast agent for cell tracking: supplementary issue. Magn Reson Insights 8:S23557

    Article  Google Scholar 

  • Kou L, Sun J, Zhai Y, He Z (2013) The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci 8:1–10

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  PubMed  Google Scholar 

  • Laurila JP, Laatikainen L, Castellone MD, Trivedi P, Heikkila J, Hinkkanen A, Hematti P, Laukkanen MO (2009) Human embryonic stem cell-derived mesenchymal stromal cell transplantation in a rat hind limb injury model. Cytotherapy 11:726–737

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Häfeli UO, Stroeve P (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Coll Surf B 75:300–309

    Article  CAS  Google Scholar 

  • McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mennan C, Wright K, Bhattacharjee A, Balain B, Richardson J, Roberts S (2013) Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord. Biomed Res Int 2013:1–8

    Article  Google Scholar 

  • Modo M, Cash D, Mellodew K, Williams SC, Fraser SE, Meade TJ, Price J, Hodges H (2002) Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 17:803–811

    Article  PubMed  Google Scholar 

  • Modo M, Mellodew K, Cash D, Fraser SE, Meade TJ, Price J, Williams SC (2004) Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21:311–317

    Article  PubMed  Google Scholar 

  • Murali VS, Wang R, Mikoryak CA, Pantano P, Draper R (2015) Rapid detection of polyethylene glycol sonolysis upon functionalization of carbon nanomaterials. Exp Biol Med 240:1147–1151

    Article  CAS  Google Scholar 

  • Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–387

    Article  CAS  PubMed  Google Scholar 

  • Nguyen PK, Riegler J, Wu JC (2014) Stem cell imaging: from bench to bedside. Cell Stem Cell 4:431–444

    Article  CAS  Google Scholar 

  • OECD (2001) The OECD guidelines for testing of chemicals, 420 acute oral toxicity-fixed dose procedure. Organization of Economic Cooperation Development, Paris

    Google Scholar 

  • Ramos-Cabrer P, Hoehn M (2012) MRI stem cell tracking for therapy in experimental cerebral ischemia. Transl Stroke Res 3:22–35

    Article  PubMed  Google Scholar 

  • Ranga A, Agarwal Y, Garg KJ (2017) Gadolinium based contrast agents in current practice: risks of accumulation and toxicity in patients with normal renal function. Indian J Radiol Imaging 27:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29:365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggiero A, Thorek DL, Guenoun J, Krestin GP, Bernsen MR (2012) Cell tracking in cardiac repair: what to image and how to image. Eur Radiol 22:189–204

    Article  PubMed  Google Scholar 

  • Sanganeria P, Chandra S, Bahadur D, Khanna A (2015a) Effect of HSA coated iron oxide labeling on human umbilical cord derived mesenchymal stem cells. Nanotechnology 26:125103

    Article  CAS  PubMed  Google Scholar 

  • Sanganeria P, Sachar S, Chandra S, Bahadur D, Ray P, Khanna A (2015b) Cellular internalization and detailed toxicity analysis of protein-immobilized iron oxide nanoparticles. J Biomed Mater Res B Appl Biomater 103:25–134

    Article  CAS  Google Scholar 

  • Schulze E, Ferrucci JJ, Poss K, Lapointe L, Bogdanova A, Weissleder R (1995) Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest Radiol 30:604–610

    Article  CAS  PubMed  Google Scholar 

  • Sharkey J, Lewis PJS, Barrow M, Alwahsh SM, Noble J, Livingstone E, Lennen RJ, Jansen MA, Carrion JG, Liptrott N, Forbes S (2017) Functionalized superparamagnetic iron oxide nanoparticles provide highly efficient iron-labeling in macrophages for magnetic resonance-based detection in vivo. Cytotherapy 19:555–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelat R, Chandra S, Khanna A (2018) Detailed toxicity evaluation of β-cyclodextrin coated iron oxide nanoparticles for biomedical applications. Int J Biol Macromol 110:357–365

    Article  CAS  PubMed  Google Scholar 

  • Shetty P, Cooper K, Viswanathan C (2010) Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells. Asian J Transfus Sci 4:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla S, Jadaun A, Arora V, Sinha RK, Biyani N, Jain VK (2015) In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicol Rep 2:27–39

    Article  CAS  PubMed  Google Scholar 

  • Sibov TT, Pavon LF, Miyaki LA, Mamani JB, Nucci LP, Alvarim LT, Silveira PH, Marti LC, Gamarra LF (2014) Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking. Int J Nanomed 9:337

    Google Scholar 

  • Silva SA, Sousa AL, Haddad AF, Azevedo JC, Soares VE, Peixoto CM, Soares AJ, Issa AF, Felipe LRV, Branco RV, Addad JA (2009) Autologous bone-marrow mononuclear cell transplantation after acute myocardial infarction: comparison of two delivery techniques. Cell Trans 18:343–352

    Article  Google Scholar 

  • Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18:4–10

    Article  CAS  PubMed  Google Scholar 

  • Sosnovik DE, Nahrendorf M, Weissleder R (2007) Molecular magnetic resonance imaging in cardiovascular medicine. Circulation 115:2076–2086

    Article  PubMed  Google Scholar 

  • Souba WW, Pacitti AJ (1992) How amino acids get into cells: mechanisms, models, menus, and mediators. J Parenter Enter Nutr 16:569–578

    Article  CAS  Google Scholar 

  • Stephen ZR, Kievit FM, Zhang M (2011) Magnetite nanoparticles for medical MR imaging. Mater Today 14:330–338

    Article  CAS  Google Scholar 

  • Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res Part A 80:333–341

    Article  CAS  Google Scholar 

  • Sun JH, Zhang YL, Qian SP, Yu XB, Xie HY, Zhou L, Zheng SS (2012) Assessment of biological characteristics of mesenchymal stem cells labeled with superparamagnetic iron oxide particles in vitro. Mol Med Rep 5:317–320

    CAS  PubMed  Google Scholar 

  • Thanh NT (2012) Magnetic nanoparticles: from fabrication to clinical applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Thomas R, Park IK, Jeong YY (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14:15910–15930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tie SL, Lin YQ, Lee HC, Bae YS, Lee CH (2006) Amino acid-coated nano-sized magnetite particles prepared by two-step transformation. Coll Surf A 273:75–83

    Article  CAS  Google Scholar 

  • Titlow WB, Lee CH, Ryou C (2013) Characterization of toxicological properties of l-lysine polymers in CD-1 mice. J Microbiol Biotechnol 23:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Ünal B, Durmus Z, Baykal A, Sözeri H, Toprak MS, Alpsoy L (2010) l-Histidine coated iron oxide nanoparticles: synthesis, structural and conductivity characterization. J Alloy Compd 505:172–178

    Article  CAS  Google Scholar 

  • Wang YXJ (2015) Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol 21:13400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin Y (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  Google Scholar 

  • Wu W, Xiao X, Zhang S, Ren F, Jiang C (2011) Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue. Nanoscale Res Lett 6:533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Wang J, Niu G, Huang J, Chen K, Li X, Chen X (2010) Human serum albumin coated iron oxide nanoparticles for efficient cell labeling. Chem Commun 46:433–435

    Article  CAS  Google Scholar 

  • Xu C, Mu L, Roes I, Miranda-Nieves D, Nahrendorf M, Ankrum JA, Zhao W, Karp JM (2011) Nanoparticle-based monitoring of cell therapy. Nanotechnology 22:494001

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu C, Miranda-Nieves D, Ankrum JA, Matthiesen ME, Phillips JA, Roes I, Wojtkiewicz GR, Juneja V, Kultima JR, Zhao W, Vemula PK (2012) Tracking mesenchymal stem cells with iron oxide nanoparticle loaded poly (lactide-co-glycolide) microparticles. Nano Lett 12:4131–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Huang S, Yu KJ, Clyne AM (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 13:5554–5570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Department of MEMS, IIT Bombay for VSM analysis, Dr. K. C. Barick, Bhabha Atomic Research Centre (BARC) for XRD facility and Dr. Kolja Them, University Medical Center, Hamburg for TEM analysis. The authors would also like to acknowledge Department of Biosciences and Bioengineering (BSBE), IIT Bombay for confocal microscopy facility. We would also like to acknowledge Dr. Bhawan Paunipagar, Head Radiologist, Wockhardt Hospitals, Mumbai and Mr. Thomas Kurian, Philps International, Mumbai for their help with MRI studies.

Funding

The authors would like to thank Department of Biotechnology (DBT), Govt of India, for financial support under the Grant No: BT/PR21753/MED/31/355/2016. Ms. Ruchita Shelat is a recipient of Women’s Scientist Scheme-A (WOS-A), Department of Science and Technology (DST), under the Grant No: SR/WOS-A/LS-453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudeshna Chandra.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All applicable national (CPCSEA) and institutional guidelines (IAEC) for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the NMIMS institution.

Additional information

Handling Editor: D. Bartolini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7628 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelat, R., Bhatt, L.K., Khanna, A. et al. A comprehensive toxicity evaluation of novel amino acid-modified magnetic ferrofluids for magnetic resonance imaging. Amino Acids 51, 929–943 (2019). https://doi.org/10.1007/s00726-019-02726-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-019-02726-1

Keywords

Navigation