Amino Acids

, Volume 51, Issue 2, pp 345–353 | Cite as

The defensive system of tree frog skin identified by peptidomics and RNA sequencing analysis

  • Mingqiang RongEmail author
  • Jie Liu
  • Qiong Liao
  • Zhilong Lin
  • Bo Wen
  • Yan RenEmail author
  • Ren LaiEmail author
Original Article


The diversity of defensive peptides from skin of amphibians has been demonstrated. These peptides may have resulted from the diversity of microorganisms encountered by amphibians. In this study, peptidomics and RNA sequencing analyses were used to study deeply the defensive peptides of the skin secretions from Polypedates megacephalus. A total of 99 defensive peptides have been identified from the skin secretions. Among these peptides, 3 peptides were myotropical peptides and 34 peptides classified as protease inhibitor peptides. 5 lectins, 8 antimicrobial peptides, 26 immunomodulatory peptides, 10 wound-healing peptides and 13 other bioactive peptides were identified as belonging to the innate immune system. One antimicrobial peptide Pm-amp1 showed high similarity to antimicrobial peptide marcin-18. This peptide was successfully expressed and showed moderate activity against four tested strains. These identified peptides highlight the extensive diversity of defensive peptides and provide powerful tools to understand the defense weapon of frog.


Frog Defensive peptides Antimicrobial peptide 



This work was supported by the National Natural Science Foundation of China (81573320) and Yunnan Provincial Science and Technology Department (P0120150010).

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

Supplementary material

726_2018_2670_MOESM1_ESM.xlsx (34 kb)
Supplementary material 1 (XLSX 33 kb)
726_2018_2670_MOESM2_ESM.xlsx (69 kb)
Supplementary material 2 (XLSX 69 kb)
726_2018_2670_MOESM3_ESM.xlsx (36 kb)
Supplementary material 3 (XLSX 36 kb)


  1. Brandt EB, Mingler MK, Stevenson MD, Wang N, Khurana Hershey GK, Whitsett JA, Rothenberg ME (2008) Surfactant protein D alters allergic lung responses in mice and human subjects. J Allergy Clin Immunol 121(5):1140 e1142–1147 e1142. CrossRefGoogle Scholar
  2. Braun N, Sen K, Alscher MD, Fritz P, Kimmel M, Morelle J, Goffin E, Jorres A, Wuthrich RP, Cohen CD, Segerer S (2013) Periostin: a matricellular protein involved in peritoneal injury during peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial 33(5):515–528. CrossRefGoogle Scholar
  3. Brosch M, Yu L, Hubbard T, Choudhary J (2009) Accurate and sensitive peptide identification with Mascot Percolator. J Proteome Res 8(6):3176–3181. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, Chen Z, Yang W, Shen Z, He X, Sheng J, Xu X, Pan B, Feng J, Yang X, Hong W, Zhao W, Li Z, Huang K, Li T, Kong Y, Liu H, Jiang D, Zhang B, Hu J, Hu Y, Wang B, Dai J, Yuan B, Feng Y, Huang W, Xing X, Zhao G, Li X, Li Y, Li W (2013) The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nat Commun 4:2602. CrossRefPubMedPubMedCentralGoogle Scholar
  5. de Boer JP, Creasey AA, Chang A, Abbink JJ, Roem D, Eerenberg AJ, Hack CE, Taylor FB Jr (1993) Alpha-2-macroglobulin functions as an inhibitor of fibrinolytic, clotting, and neutrophilic proteinases in sepsis: studies using a baboon model. Infect Immun 61(12):5035–5043PubMedPubMedCentralGoogle Scholar
  6. Gussow D, Rein R, Ginjaar I, Hochstenbach F, Seemann G, Kottman A, Ploegh HL (1987) The human beta 2-microglobulin gene. Primary structure and definition of the transcriptional unit. J Immunol 139(9):3132–3138PubMedGoogle Scholar
  7. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512. CrossRefPubMedGoogle Scholar
  8. Hao X, Yang H, Wei L, Yang S, Zhu W, Ma D, Yu H, Lai R (2012) Amphibian cathelicidin fills the evolutionary gap of cathelicidin in vertebrate. Amino Acids 43(2):677–685. CrossRefPubMedGoogle Scholar
  9. He X, Yang S, Wei L, Liu R, Lai R, Rong M (2013) Antimicrobial peptide diversity in the skin of the torrent frog, Amolops jingdongensis. Amino Acids 44(2):481–487. CrossRefPubMedGoogle Scholar
  10. Huo Y, Xv R, Ma H, Zhou J, Xi X, Wu Q, Duan J, Zhou M, Chen T (2018) Identification of < 10 KD peptides in the water extraction of Venenum Bufonis from Bufo gargarizans using nano LC–MS/MS and de novo sequencing. J Pharm Biomed Anal 157:156–164. CrossRefPubMedGoogle Scholar
  11. Laux-Biehlmann A, Mouheiche J, Veriepe J, Goumon Y (2013) Endogenous morphine and its metabolites in mammals: history, synthesis, localization and perspectives. Neuroscience 233:95–117. CrossRefPubMedGoogle Scholar
  12. Li JT, Che J, Bain RH, Zhao EM, Zhang YP (2008) Molecular phylogeny of Rhacophoridae (Anura): a framework of taxonomic reassignment of species within the genera Aquixalus, Chiromantis, Rhacophorus, and Philautus. Mol Phylogenet Evol 48(1):302–312. CrossRefPubMedGoogle Scholar
  13. Liu J, Wang C, Fu D, Hu X, Xie X, Liu P, Zhang Q, Li MH (2015) Phylogeography of Nanorana parkeri (Anura: Ranidae) and multiple refugia on the Tibetan Plateau revealed by mitochondrial and nuclear DNA. Sci Rep 5:9857. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Luan N, Shen W, Liu J, Wen B, Lin Z, Yang S, Lai R, Liu S, Rong M (2016) A Combinational strategy upon RNA sequencing and peptidomics unravels a set of novel toxin peptides in scorpion Mesobuthus martensii. Toxins. PubMedPubMedCentralCrossRefGoogle Scholar
  15. Meng P, Huang H, Wang G, Yang S, Lu Q, Liu J, Lai R, Rong M (2016) A novel toxin from Haplopelma lividum selectively inhibits the NaV1.8 channel and possesses potent analgesic efficacy. Toxins. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Moncada DM, Kammanadiminti SJ, Chadee K (2003) Mucin and Toll-like receptors in host defense against intestinal parasites. Trends Parasitol 19(7):305–311CrossRefPubMedGoogle Scholar
  17. Pavlova A, Bjork I (2003) Grafting of features of cystatins C or B into the N-terminal region or second binding loop of cystatin A (stefin A) substantially enhances inhibition of cysteine proteinases. Biochemistry 42(38):11326–11333. CrossRefPubMedGoogle Scholar
  18. Rong M, Yang S, Wen B, Mo G, Kang D, Liu J, Lin Z, Jiang W, Li B, Du C, Yang S, Jiang H, Feng Q, Xu X, Wang J, Lai R (2015) Peptidomics combined with cDNA library unravel the diversity of centipede venom. J Proteom 114:28–37. CrossRefGoogle Scholar
  19. Rong M, Liu J, Zhang M, Wang G, Zhao G, Wang G, Zhang Y, Hu K, Lai R (2016) A sodium channel inhibitor ISTX-I with a novel structure provides a new hint at the evolutionary link between two toxin folds. Sci Rep 6:29691. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sashchenko LP, Dukhanina EA, Yashin DV, Shatalov YV, Romanova EA, Korobko EV, Demin AV, Lukyanova TI, Kabanova OD, Khaidukov SV, Kiselev SL, Gabibov AG, Gnuchev NV, Georgiev GP (2004) Peptidoglycan recognition protein tag7 forms a cytotoxic complex with heat shock protein 70 in solution and in lymphocytes. J Biol Chem 279(3):2117–2124. CrossRefPubMedGoogle Scholar
  21. Wen B, Zhou R, Feng Q, Wang Q, Wang J, Liu S (2014) IQuant: an automated pipeline for quantitative proteomics based upon isobaric tags. Proteomics 14(20):2280–2285. CrossRefPubMedGoogle Scholar
  22. Wen B, Xu S, Zhou R, Zhang B, Wang X, Liu X, Xu X, Liu S (2016) PGA: an R/Bioconductor package for identification of novel peptides using a customized database derived from RNA-Seq. BMC Bioinform 17(1):244. CrossRefGoogle Scholar
  23. Wu J, Yang J, Wang X, Wei L, Mi K, Shen Y, Liu T, Yang H, Mu L (2018) A frog cathelicidin peptide effectively promotes cutaneous wound healing in mice. Biochem J 475(17):2785–2799. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Xu X, Lai R (2015) The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 115(4):1760–1846. CrossRefPubMedGoogle Scholar
  25. Yan H, Liu Y, Tang J, Mo G, Song Y, Yan X, Wei L, Lai R (2013) A novel antimicrobial peptide from skin secretions of the tree frog Theloderma kwangsiensis. Zool Sci 30(9):704–709. CrossRefPubMedGoogle Scholar
  26. You D, Hong J, Rong M, Yu H, Liang S, Ma Y, Yang H, Wu J, Lin D, Lai R (2009) The first gene-encoded amphibian neurotoxin. J Biol Chem 284(33):22079–22086. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yu G, Rao D, Zhang M, Yang J (2009) Re-examination of the phylogeny of Rhacophoridae (Anura) based on mitochondrial and nuclear DNA. Mol Phylogenet Evol 50(3):571–579. CrossRefPubMedGoogle Scholar
  28. Zhang H, Wei L, Zou C, Bai JJ, Song Y, Liu H (2013) Purification and characterization of a tachykinin-like peptide from skin secretions of the tree frog, Theloderma kwangsiensis. Zool Sci 30(7):529–533. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaChina
  2. 2.BGI-ShenzhenShenzhenChina
  3. 3.Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences’and Yunnan Province, Kunming Institute of ZoologyKunmingChina
  4. 4.China National GeneBank, BGI-ShenzhenShenzhenChina

Personalised recommendations