Skip to main content
Log in

1H NMR spectroscopy in the presence of Mosher acid to rapidly determine the enantiomeric composition of amino acid benzyl esters, chirons susceptible to easy racemization

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Amino acid benzyl esters are very useful chiral synthons, whose enantiomeric purity needs to be carefully verified because of their susceptibility to easy racemization. Alternative to chiral HPLC, 1H NMR in the presence of a chiral solvating agent (CSA) can allow a more rapid and acceptably accurate determination of the enantiomeric composition, if explicit spectral non-equivalence of one or more protons of the analyte enantiomers is found. Here, we have studied the enantiodiscrimination of 13 amino acid benzyl esters by 1H NMR in the presence of (R)-Mosher acid and in different solvents proving that, for 5 of them (Ala, Pro, Glu, Met, Ser), efficient enantiodifferentiation can be achieved and ≤ 98% enatiomeric excesses accurately determined. Generally, as expectable, the best enantiodifferentiated proton was that on the amino acid stereogenic α-carbon, but also the spectral non-equivalence of methyl protons and of protons on the β-carbon and on the benzylic carbon could be exploited to distinguish the two enantiomers and to quantify the minor one. Structural feature favoring the amino acid ester enantiodiscrimination by the CSA seems to be low sterical hindrance at the amino acid β-carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bada JL (1972) Kinetics of racemization of amino acids as a function of pH. J Am Chem Soc 94:1371–1373

    Article  CAS  Google Scholar 

  • Bergmeier SC, Cobas AA, Rapoport H (1993) Chirospecific synthesis of (1S,3R9-1-amino-3-(hydroxymethyl)cyclopentane, precursor of carbocyclic nucleoside synthesis. Dieckmann cyclization with an alpha-amino acid. J Org Chem 58:2369–2376

    Article  CAS  Google Scholar 

  • Bolchi C, Valoti E, Gotti C, Fasoli F, Ruggeri P, Fumagalli L, Binda M, Mucchietto V, Sciaccaluga M, Budriesi R, Fucile S, Pallavicini M (2015) Chemistry and pharmacology of a series of unichiral analogues of 2-(2-pyrrolidinyl)-1,4-benzodioxane, prolinol phenyl ether, and prolinol 3-pyridyl ether designed as alpha4beta2-nNicotinic acetylcholine receptor agonists. J Med Chem 58:6665–6677

    Article  CAS  Google Scholar 

  • Bolchi C, Bavo F, Pallavicini M (2017a) One-step preparation of enantiopure l- or d-amino acid benzyl esters avoiding the use of banned solvents. Amino Acids 49:965–974

    Article  CAS  Google Scholar 

  • Bolchi C, Bavo F, Pallavicini M (2017b) Phase diagrams to evaluate the opportunity for enantiomeric enrichment of some nonracemic mixtures of amino acid benzyl esters by crystallization as p-toluenesulfonate salts. Org Process Res Dev 21:1752–1757

    Article  CAS  Google Scholar 

  • Bolchi C, Bavo F, Regazzoni L, Pallavicini M (2018) Preparation of enantiopure methionine, arginine, tryptophan, and proline benzyl esters in gree ethers by Fischer-Speier reaction. Amino Acids. https://doi.org/10.1007/s00726-018-2599-2

    Article  PubMed  Google Scholar 

  • Dale JA, Dull DL, Mosher HS (1969) alpha-Methoxy-alpha-trifluorophenylacetic acid, a versatile reagent for the determination of enantiomeric composition of alcohols and amines. J Org Chem 34:2543–2549

    Article  CAS  Google Scholar 

  • Dhaon MK, Olsen RK, Ramasamy K (1982) Esaterification of N-protected alpha-amino acids with alcohol/carbodiimide/4-(dimethylamino)pyridine. racemization of aspartic and glutamic acid derivatives. J Org Chem 47:1962–1965

    Article  CAS  Google Scholar 

  • Izumiya N, Makisumi S (1957) Synthesis of aminoacid benzyl ester p-toluenesulfonates. Nippon Kagaku Zasshi 78:662–664

    Article  CAS  Google Scholar 

  • Jobbins MO, Miller MJ (2014) Syntheses of hydroxamic acid-containing bicyclic beta-lactams via palladium-catalyzed oxidative amidation of alkenes. J Org Chem 79:1620–1625

    Article  CAS  Google Scholar 

  • Kozikowski AP, Liao Y, Tückmantel W, Wang S, Pshenichkin S, Surin A, Thomsen C, Wroblewski JT (1996) Synthesis and biology of the rigidified glutamate analogue, trans-2-carboxyazetidine-3-acetic (t-CAA). Bioorg Med Chem Lett 6:2559–2564

    Article  CAS  Google Scholar 

  • Lynch JK, Holladay MW, Ryther KB, Bai H, Hsiao C, Morton HE, Dickman DA, Arnold W, King SA (1998) Efficient asymmetric synthesis of ABT-594; a potent, orally effective analgesic. Tetrahedron Asymmetry 9:2791–2794

    Article  CAS  Google Scholar 

  • Manning JM (1970) Determination of d- and l-amino acid residues in peptides. Use of tritiated hydrochloric acid to correct for racemization during acid hydrolysis. J Am Chem Soc 92:7449–7454

    Article  CAS  Google Scholar 

  • Matsuo H, Kawazoe Y, Sato M, Ohnishi M, Tatsuno T (1967) Studies on the racemization of amino acids and their derivatives I. Chem Pharm Bull 15:391–398

    Article  CAS  Google Scholar 

  • Meiresonne T, Mangelinckx S, De Kimpe N (2012) Stereoselective synthesis of both enantiomers of trans-2-(diphenylmethylideneamino)cyclopropanecarboxylic acid using a chiral pool approach and their incorporation in dipeptides. Tetrahedron 68:9566–9571

    Article  CAS  Google Scholar 

  • Nemes A, Csóka T, Béni S, Farkas V, Rábai J, Szabó D (2015) Chiral recognition studies of α-(nonafluoro-tert-butoxy)carboxylic acids by NMR spectroscopy. J Org Chem 80:6267–6274

    Article  CAS  Google Scholar 

  • Parker D (1991) NMR determination of enantiomeric purity. Chem Rew 91:1441–1457

    Article  CAS  Google Scholar 

  • Pérez-Trujillo M, Monteagudo E, Parella T (2013) 13C NMR Spectroscopy for the differentiation of enantiomers using chiral solvating agents. Anal Chem 85:10887–10894

    Article  Google Scholar 

  • Rudolph J, Hannig F, Theis H, Wischnat R (2001) Highly efficient chiral-pool synthesis of (2S,4R9-4-hydroxyornithine. Org Lett 3:3153–3155

    Article  CAS  Google Scholar 

  • Sato M, Tatsuno T, Matsuo H (1970) Studies on the racemization of amino acids and their derivatives III. Chem Pharm Bull 18:1794–1798

    Article  CAS  Google Scholar 

  • Seco JM, Quiñoá E, Riguera R (2004) The assignment of absolute configuration by NMR. Chem Rev 104:17–118

    Article  CAS  Google Scholar 

  • Seco JM, Quiñoá E, Riguera R (2012) Assignment of the absolute configuration of polyfunctional compounds by NMR using chiral derivatizing agents. Chem Rev 112:4603–4641

    Article  CAS  Google Scholar 

  • Smith GG, Evans RC (1980) The effect of structure and conditions on the rate of racemization of free and bound amino acids. In: Hare PE, Hoering TC, King K Jr (eds) Biogeochemistry of amino acids. Wiley, New York, pp 257–282

    Google Scholar 

  • Smith GG, Sivakua T (1983) Mechanism of the racemization of amino acids. Kinetics of racemization of arylglycines. J Org Chem 48:627–634

    Article  CAS  Google Scholar 

  • Soicke A, Reuter C, Winter M, Neudörfl J, Schlörer N, Kühne R, Schmalz H (2014) Stereoselective synthesis of tricyclic diproline analogues that mimic a PPII helix: structural consequences of ring-size variation. Eur J Org Chem 2014:6467–6480

    Article  CAS  Google Scholar 

  • Wenzel TJ, Chisholm CD (2011) Assignment of absolute configuration using chiral reagents and NMR spectroscopy. Chirality 23:190–214

    Article  CAS  Google Scholar 

  • Zervas L, Winitz M, Greenstein JP (1957) Arginine peptides. I. Intermediates in the synthesis of N-terminal and C-terminal arginine peptides. J Org Chem 22:1515–1521

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs Donatella Nava for her excellent technical assistance in measuring NMR spectra on a Bruker Avance spectrometer at 600 MHz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Bolchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Handling Editor: Y. Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 740 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolchi, C., Roda, G. & Pallavicini, M. 1H NMR spectroscopy in the presence of Mosher acid to rapidly determine the enantiomeric composition of amino acid benzyl esters, chirons susceptible to easy racemization. Amino Acids 50, 1759–1767 (2018). https://doi.org/10.1007/s00726-018-2653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2653-0

Keywords

Navigation