Advertisement

Amino Acids

, Volume 50, Issue 12, pp 1749–1758 | Cite as

Taurine exhibits an apoptosis-inducing effect on human nasopharyngeal carcinoma cells through PTEN/Akt pathways in vitro

  • Feng He
  • Ning Ma
  • Kaoru Midorikawa
  • Yusuke Hiraku
  • Shinji Oikawa
  • Zhe Zhang
  • Guangwu Huang
  • Kazuhiko TakeuchiEmail author
  • Mariko MurataEmail author
Original Article

Abstract

Nasopharyngeal carcinoma (NPC) is a distinctive type of head and neck malignancy with a high incidence in southern China. Previous studies have confirmed that taurine shows an anti-cancer effect on a variety of human tumors by inhibiting cell proliferation and inducing apoptosis. However, the underlying molecular mechanism of its anti-cancer effect on NPC is not well understood. To clarify these anti-cancer mechanisms, we performed cell viability and colony formation assays. Apoptotic cells were quantified by flow cytometry. The expression levels of apoptosis-related proteins were evaluated by Western blot. The results showed that taurine markedly inhibited cell proliferation in NPC cells, but only slightly in an immortalized normal nasopharyngeal cell line. Taurine suppressed colony formation and induced apoptosis of NPC cell lines in a dose-dependent manner. Furthermore, taurine increased the active form of caspase-9/3 in a dose-dependent manner. Taurine down-regulated the anti-apoptotic protein Bcl-xL and up-regulated the pro-apoptotic protein Bax and GRP78, a major endoplasmic reticulum (ER) chaperone. These results suggest the involvement of mitochondrial and ER stress signaling in apoptosis. In addition, taurine increased the levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10) and p53, and reduced phosphorylated Akt (protein kinase B). In conclusion, taurine may inhibit cell proliferation and induce apoptosis in NPC through PTEN activation with concomitant Akt inactivation.

Keywords

Taurine NPC Apoptosis PTEN Akt 

Notes

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Numbers JP16H05255 (MM). We also thank the Takeda Science Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

All authors listed have contributed to the conception, design, gathering, analysis, or interpretation of data and have contributed to the writing and intellectual content of the article. All authors gave informed consent to the submission of this manuscript.

Supplementary material

726_2018_2651_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)
726_2018_2651_MOESM2_ESM.pptx (4.8 mb)
Supplementary material 2 (PPTX 4927 kb)
726_2018_2651_MOESM3_ESM.docx (16 kb)
Supplementary material 3 (DOCX 15 kb)
726_2018_2651_MOESM4_ESM.docx (17 kb)
Supplementary material 4 (DOCX 16 kb)

References

  1. Bononi A, Bonora M, Marchi S, Missiroli S, Poletti F, Giorgi C, Pandolfi PP, Pinton P (2013) Identification of PTEN at the ER and MAMs and its regulation of Ca(2+) signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ 20(12):1631–1643.  https://doi.org/10.1038/cdd.2013.77 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chang CY, Shen CY, Kang CK, Sher YP, Sheu WH, Chang CC, Lee TH (2014) Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways. Toxicol Appl Pharmacol 279(3):351–363.  https://doi.org/10.1016/j.taap.2014.06.029 CrossRefPubMedGoogle Scholar
  3. Chen AW, Tseng YS, Lin CC, Hsi YT, Lo YS, Chuang YC, Lin SH, Yu CY, Hsieh MJ, Chen MK (2018) Norcantharidin induce apoptosis in human nasopharyngeal carcinoma through caspase and mitochondrial pathway. Environ Toxicol 33(3):343–350.  https://doi.org/10.1002/tox.22521 CrossRefPubMedGoogle Scholar
  4. Das J, Ghosh J, Manna P, Sil PC (2011) Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharmacol 81(7):891–909.  https://doi.org/10.1016/j.bcp.2011.01.008 CrossRefPubMedGoogle Scholar
  5. Dillon CP, Green DR (2016) Molecular cell biology of apoptosis and necroptosis in cancer. Adv Exp Med Biol 930:1–23.  https://doi.org/10.1007/978-3-319-39406-0_1 CrossRefPubMedGoogle Scholar
  6. Emerson DK, McCormick ML, Schmidt JA, Knudson CM (2005) Taurine monochloramine activates a cell death pathway involving Bax and Caspase-9. J Biol Chem 280(5):3233–3241.  https://doi.org/10.1074/jbc.M411672200 CrossRefPubMedGoogle Scholar
  7. Fmb SM, Chitra K, Joseph B, Sundararajan R, Hemalatha S (2018) Gelidiella acerosa inhibits lung cancer proliferation. BMC Complement Altern Med 18(1):104.  https://doi.org/10.1186/s12906-018-2165-1 CrossRefGoogle Scholar
  8. Gaucher D, Arnault E, Husson Z, Froger N, Dubus E, Gondouin P, Dherbecourt D, Degardin J, Simonutti M, Fouquet S, Benahmed MA, Elbayed K, Namer IJ, Massin P, Sahel JA, Picaud S (2012) Taurine deficiency damages retinal neurones: cone photoreceptors and retinal ganglion cells. Amino Acids 43(5):1979–1993.  https://doi.org/10.1007/s00726-012-1273-3 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55(3):178–194CrossRefGoogle Scholar
  10. Gil HN, Koh D, Lim Y, Lee YH, Shin SY (2018) The synthetic chalcone derivative 2-hydroxy-3′,5,5′-trimethoxychalcone induces unfolded protein response-mediated apoptosis in A549 lung cancer cells. Bioorg Med Chem Lett.  https://doi.org/10.1016/j.bmcl.2018.07.003 CrossRefPubMedGoogle Scholar
  11. Huang DP, Ho JH, Poon YF, Chew EC, Saw D, Lui M, Li CL, Mak LS, Lai SH, Lau WH (1980) Establishment of a cell line (NPC/HK1) from a differentiated squamous carcinoma of the nasopharynx. Int J Cancer 26(2):127–132CrossRefGoogle Scholar
  12. Jiang JH, Pi J, Jin H, Yang F, Cai JY (2018) Chinese herb medicine matrine induce apoptosis in human esophageal squamous cancer KYSE-150 cells through increasing reactive oxygen species and inhibiting mitochondrial function. Pathol Res Pract.  https://doi.org/10.1016/j.prp.2018.03.015 CrossRefPubMedGoogle Scholar
  13. Jong CJ, Ito T, Prentice H, Wu JY, Schaffer SW (2017) Role of mitochondria and endoplasmic reticulum in taurine-deficiency-mediated apoptosis. Nutrients 9(8):795.  https://doi.org/10.3390/nu9080795 CrossRefPubMedCentralGoogle Scholar
  14. Khalil RM, Abdo WS, Saad A, Khedr EG (2017) Muscle proteolytic system modulation through the effect of taurine on mice bearing muscular atrophy. Mol Cell Biochem.  https://doi.org/10.1007/s11010-017-3240-5 CrossRefPubMedGoogle Scholar
  15. Kilb W, Fukuda A (2017) Taurine as an essential neuromodulator during perinatal cortical development. Front Cell Neurosci 11:328.  https://doi.org/10.3389/fncel.2017.00328 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kontny E, Rudnicka W, Chorazy-Massalska M, Marcinkiewicz J, Maslinski W (2006) Taurine chloramine inhibits proliferation of rheumatoid arthritis synoviocytes by triggering a p53-dependent pathway. Inflamm Res 55(10):446–455.  https://doi.org/10.1007/s00011-006-5067-5 CrossRefPubMedGoogle Scholar
  17. Kubo Y, Akanuma SI, Hosoya KI (2016) Impact of SLC6A transporters in physiological taurine transport at the blood-retinal barrier and in the liver. Biol Pharm Bull 39(12):1903–1911.  https://doi.org/10.1248/bpb.b16-00597 CrossRefPubMedGoogle Scholar
  18. Lang F, Ritter M, Gamper N, Huber S, Fillon S, Tanneur V, Lepple-Wienhues A, Szabo I, Gulbins E (2000) Cell volume in the regulation of cell proliferation and apoptotic cell death. Cell Physiol Biochem 10(5–6):417–428.  https://doi.org/10.1159/000016367 CrossRefPubMedGoogle Scholar
  19. Leon R, Wu H, Jin Y, Wei J, Buddhala C, Prentice H, Wu JY (2009) Protective function of taurine in glutamate-induced apoptosis in cultured neurons. J Neurosci Res 87(5):1185–1194.  https://doi.org/10.1002/jnr.21926 CrossRefPubMedGoogle Scholar
  20. Li HM, Man C, Jin Y, Deng W, Yip YL, Feng HC, Cheung YC, Lo KW, Meltzer PS, Wu ZG, Kwong YL, Yuen AP, Tsao SW (2006) Molecular and cytogenetic changes involved in the immortalization of nasopharyngeal epithelial cells by telomerase. Int J Cancer 119(7):1567–1576.  https://doi.org/10.1002/ijc.22032 CrossRefPubMedGoogle Scholar
  21. Lin HF, Hsieh MJ, Hsi YT, Lo YS, Chuang YC, Chen MK, Chien SY (2017) Celastrol-induced apoptosis in human nasopharyngeal carcinoma is associated with the activation of the death receptor and the mitochondrial pathway. Oncol Lett 14(2):1683–1690.  https://doi.org/10.3892/ol.2017.6346 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lo AK, Lo KW, Tsao SW, Wong HL, Hui JW, To KF, Hayward DS, Chui YL, Lau YL, Takada K, Huang DP (2006) Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells. Neoplasia 8(3):173–180.  https://doi.org/10.1593/neo.05625 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46(1):7–20.  https://doi.org/10.1007/s00726-012-1361-4 CrossRefPubMedGoogle Scholar
  24. McDermott AL, Dutt SN, Watkinson JC (2001) The aetiology of nasopharyngeal carcinoma. Clin Otolaryngol Allied Sci 26(2):82–92CrossRefGoogle Scholar
  25. Pandya K, Clark GJ, Lau-Cam CA (2017) Investigation of the role of a supplementation with taurine on the effects of hypoglycemic-hypotensive therapy against diabetes-induced nephrotoxicity in rats. Adv Exp Med Biol 975:371–400.  https://doi.org/10.1007/978-94-024-1079-2_32 CrossRefPubMedGoogle Scholar
  26. Pramod AB, Foster J, Carvelli L, Henry LK (2013) SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Asp Med 34(2–3):197–219.  https://doi.org/10.1016/j.mam.2012.07.002 CrossRefGoogle Scholar
  27. Ruefli-Brasse A, Reed JC (2017) Therapeutics targeting Bcl-2 in hematological malignancies. Biochem J 474(21):3643–3657.  https://doi.org/10.1042/BCJ20170080 CrossRefPubMedGoogle Scholar
  28. Schaffer SW, Jong CJ, Ramila KC, Azuma J (2010) Physiological roles of taurine in heart and muscle. J Biomed Sci 17(Suppl 1):S2.  https://doi.org/10.1186/1423-0127-17-S1-S2 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Shimada K, Jong CJ, Takahashi K, Schaffer SW (2015) Role of ROS production and turnover in the antioxidant activity of taurine. Adv Exp Med Biol 803:581–596.  https://doi.org/10.1007/978-3-319-15126-7_47 CrossRefPubMedGoogle Scholar
  30. Tsang CM, Zhang G, Seto E, Takada K, Deng W, Yip YL, Man C, Hau PM, Chen H, Cao Y, Lo KW, Middeldorp JM, Cheung AL, Tsao SW (2010) Epstein-Barr virus infection in immortalized nasopharyngeal epithelial cells: regulation of infection and phenotypic characterization. Int J Cancer 127(7):1570–1583.  https://doi.org/10.1002/ijc.25173 CrossRefPubMedGoogle Scholar
  31. Tu S, Zhang XL, Wan HF, Xia YQ, Liu ZQ, Yang XH, Wan FS (2018) Effect of taurine on cell proliferation and apoptosis human lung cancer A549 cells. Oncol Lett 15(4):5473–5480.  https://doi.org/10.3892/ol.2018.8036 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wang M, Wey S, Zhang Y, Ye R, Lee AS (2009) Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal 11(9):2307–2316.  https://doi.org/10.1089/ARS.2009.2485 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wang SC, Lin XL, Wang HY, Qin YJ, Chen L, Li J, Jia JS, Shen HF, Yang S, Xie RY, Wei F, Gao F, Rong XX, Yang J, Zhao WT, Zhang TT, Shi JW, Yao KT, Luo WR, Sun Y, Xiao D (2015) Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway. Oncotarget 6(34):36713–36730.  https://doi.org/10.18632/oncotarget.5457 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Waymouth C (1970) Osmolality of mammalian blood and of media for culture of mammalian cells. In Vitro 6(2):109–127CrossRefGoogle Scholar
  35. Wu CC, Fang CY, Huang SY, Chiu SH, Lee CH, Chen JY (2018) Perspective: contribution of Epstein-Barr virus (EBV) reactivation to the carcinogenicity of nasopharyngeal cancer cells. Cancers 10(4):120.  https://doi.org/10.3390/cancers10040120 CrossRefPubMedCentralGoogle Scholar
  36. Xie M, Yi X, Wang R, Wang L, He G, Zhu M, Qi C, Liu Y, Ye Y, Tan S, Tang A (2014) 14-Thienyl methylene matrine (YYJ18), the derivative from matrine, induces apoptosis of human nasopharyngeal carcinoma cells by targeting MAPK and PI3 K/Akt pathways in vitro. Cell Physiol Biochem 33(5):1475–1483.  https://doi.org/10.1159/000358712 CrossRefPubMedGoogle Scholar
  37. Xu X, Yang H, Huo X (2004) Expression and significance of PTEN in nasopharyngeal carcinoma. J Clin Otorhinolaryngol 18(11):658–659 (in Chinese) Google Scholar
  38. Xu T, Tang J, Gu M, Liu L, Wei W, Yang H (2013) Recurrent nasopharyngeal carcinoma: a clinical dilemma and challenge. Curr Oncol 20(5):e406–e419.  https://doi.org/10.3747/co.20.1456 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yao JJ, Zhou GQ, Wang YQ, Wang SY, Zhang WJ, Jin YN, Zhang F, Li L, Liu LZ, Cheng ZB, Ma J, Qi ZY, Sun Y (2017) Prognostic values of the integrated model incorporating the volume of metastatic regional cervical lymph node and pretreatment serum Epstein-Barr virus DNA copy number in predicting distant metastasis in patients with N1 nasopharyngeal carcinoma. Chin J Cancer 36(1):98.  https://doi.org/10.1186/s40880-017-0264-x CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhang LY, Ho-Fun Lee V, Wong AM, Kwong DL, Zhu YH, Dong SS, Kong KL, Chen J, Tsao SW, Guan XY, Fu L (2013) MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN. Carcinogenesis 34(2):454–463.  https://doi.org/10.1093/carcin/bgs346 CrossRefPubMedGoogle Scholar
  41. Zhang X, Tu S, Wang Y, Xu B, Wan F (2014) Mechanism of taurine-induced apoptosis in human colon cancer cells. Acta Biochim Biophys Sin 46(4):261–272.  https://doi.org/10.1093/abbs/gmu004 CrossRefPubMedGoogle Scholar
  42. Zhang X, Lu H, Wang Y, Liu C, Zhu W, Zheng S, Wan F (2015) Taurine induces the apoptosis of breast cancer cells by regulating apoptosis-related proteins of mitochondria. Int J Mol Med 35(1):218–226.  https://doi.org/10.3892/ijmm.2014.2002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Feng He
    • 1
    • 2
    • 4
  • Ning Ma
    • 3
  • Kaoru Midorikawa
    • 1
  • Yusuke Hiraku
    • 1
  • Shinji Oikawa
    • 1
  • Zhe Zhang
    • 4
  • Guangwu Huang
    • 4
  • Kazuhiko Takeuchi
    • 2
    Email author
  • Mariko Murata
    • 1
    Email author
  1. 1.Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuJapan
  2. 2.Department of Otolaryngology Head and Neck SurgeryMie University Graduate School of MedicineTsuJapan
  3. 3.Graduate School of Health ScienceSuzuka University of Medical ScienceSuzukaJapan
  4. 4.Department of Otolaryngology-Head and Neck SurgeryFirst Affiliated Hospital of Guangxi Medical UniversityNanning, GuangxiChina

Personalised recommendations