Skip to main content

Advertisement

Log in

l-Glutamate nutrition and metabolism in swine

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

l-Glutamate (Glu) has traditionally not been considered as a nutrient needed in diets for humans and other animals (including swine) due to the unsubstantiated assumption that animals can synthesize sufficient amounts of Glu to meet their needs. The lack of knowledge about Glu nutrition has contributed to suboptimal efficiency of global livestock production. Over the past 25 years, there has been growing interest in Glu metabolism in the pig, which is an agriculturally important species and also a useful model for studying human biology. Because of analytical advances in its analysis, Glu is now known to be a highly abundant free amino acid in milk and intracellular fluid, a major constituent of food and tissue proteins, and a key regulator of gene expression, cell signaling, and anti-oxidative reactions. Emerging evidence shows that dietary supplementation with 2% Glu maintains gut health and prevents intestinal dysfunction in weanling piglets, while enhancing their growth performance and survival. In addition, the inclusion of 2% Glu is required for dietary arginine to maximize the growth performance and feed efficiency in growing pigs, whereas dietary supplementation with 2% Glu reduces the loss of skeletal muscle mass in endotoxin-challenged pigs. Furthermore, supplementing 2% Glu to a corn- and soybean-meal-based diet promotes milk production by lactating sows. Thus, an adequate amount of dietary Glu as a quantitatively major nutrient is necessary to support maximum growth, development, and production performance of swine. These results also have important implications for improving the nutrition and health of humans and other animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Amino acid

BW:

Body weight

CP:

Crude protein

GDH:

Glutamate dehydrogenase

Gln:

l-Glutamine

Glu:

L-Glutamate

α-KG:

α-Ketoglutarate

mTOR:

Mechanistic target of rapamycin

NRC:

National Research Council

References

  • Bazer FW, Thatcher WW, Martinat-Botte F et al (1988) Conceptus development in Large White and prolific Chinese Meishan pigs. J Reprod Fert 84:37–42

    Article  CAS  Google Scholar 

  • Bazer FW, Wu G, Johnson GA et al (2014) Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways. Mol Cell Endocrinol 398:53–68

    Article  CAS  PubMed  Google Scholar 

  • Bignell H (2014) Maternal ingestion of glutamine and glutamate during sow pregnancy and lactation: lipid profile analysis of milk and neonatal adipose tissues. M.S. Thesis, Rutgers University, New Brunswick, New Jersey

  • Blachier F, Guihot-Joubrel G, Vaugelade P et al (1999) Portal hyperglutamatemia after dietary supplementation with monosodium glutamate in pigs. Digestion 60:349–357

    Article  CAS  PubMed  Google Scholar 

  • Blachier F, Boutry C, Bos C et al (2009) Metabolism and functions of l-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90:814S–821S

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2013) Glutamate: a truly functional amino acid. Amino Acids 45:413–418

    Article  CAS  PubMed  Google Scholar 

  • Cabrera RA, Usry JL, Arrellano C et al (2013) Effects of creep feeding and supplemental glutamine or glutamine plus glutamate (Aminogut) on pre- and post-weaning growth performance and intestinal health of piglets. J Anim Sci Biotech 43:29

    Article  CAS  Google Scholar 

  • Chung TK, Baker DH (1992) Ideal amino acid pattern for ten kilogram pigs. J Anim Sci 70:3102–3111

    Article  CAS  PubMed  Google Scholar 

  • Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159

    Article  CAS  PubMed  Google Scholar 

  • Daabees TT, Andersen DW, Zike WL et al (1994) Effect of meal components on peripheral and portal plasma glutamate levels in young pigs administered large doses of monosodium-l-glutamate. Metabolism 22:58–67

    Google Scholar 

  • Duan J, Yin J, Wu M et al (2014) Dietary glutamate supplementation ameliorates mycotoxin-induced abnormalities in the intestinal structure and expression of amino acid transporters in young pigs. PLoS ONE 9(11):e112357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Yin J, Ren W et al (2016) Dietary supplementation with l-glutamate and l-aspartate alleviates oxidative stress in weaned piglets challenged with hydrogen peroxide. Amino Acids 48:53–64

    Article  CAS  PubMed  Google Scholar 

  • Fickler VJ, Kirchgessner M, Roth FX (1995) The effect of dietary arginine supply on the N balance of piglets. 4th. communication on the importance of non-essential amino acids for protein retention. J Anim Physiol Anim Nutr 73:159–168

    Article  CAS  Google Scholar 

  • Flynn NE, Wu G (1996) An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am J Physiol 271:R1149–R1155

    CAS  PubMed  Google Scholar 

  • Flynn NE, Knabe DA, Mallick BK et al (2000) Postnatal changes of plasma amino acids suckling pigs. J Anim Sci 78:2369–2375

    Article  CAS  PubMed  Google Scholar 

  • Gatel F, Guion P (1990) Effects of monosodium l-glutamate on diet palatability and piglet performance during the suckling and weaning periods. Anim Prod 50:365–372

    Article  CAS  Google Scholar 

  • Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  CAS  PubMed  Google Scholar 

  • Hewitt RJE, van Barneveld RJ (2012) Supplementation of lactating sow diets with glutamine to improve milk yield and growth of piglets. http://apri.com.au/2D-132_Final_report_120504.pdf. Accessed 23 Oct 2017

  • Hou YQ, Wu G (2017) Nutritionally nonessential amino acids: a misnomer in nutritional sciences. Adv Nutr 8:137–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, Yao K, Yin YL et al (2016) Endogenous synthesis of amino acids limits growth, lactation and reproduction of animals. Adv Nutr 7:331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CJ, Jiang QY, Zhang T et al (2017) Dietary supplementation with arginine and glutamic acid modifies growth performance, carcass traits, and meat quality in growing-finishing pigs. J Anim Sci 95:2680–2689

    CAS  PubMed  Google Scholar 

  • Janeczko MJ, Stoll B, Chang X et al (2007) Extensive gut metabolism limits the intestinal absorption of excessive supplemental dietary glutamate loads in infant pigs. J Nutr 137:2384–2390

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Wu Z, Dai Z et al (2017) Fetal and neonatal programming of postnatal growth and feed efficiency in swine. J Anim Sci Biotech 8:42

    Article  CAS  Google Scholar 

  • Jiao N, Wu Z, Ji Y et al (2015) l-Glutamate enhances barrier and antioxidative functions in intestinal porcine epithelial cells. J Nutr 145:2258–2264

    Article  CAS  PubMed  Google Scholar 

  • Junco E, Perez R, Jofre R et al (1991) Acute and chronic metabolic acidosis in the pig: renal metabolism and ammoniagenesis. Contrib Nephrol 92:18–30

    Article  CAS  PubMed  Google Scholar 

  • Kang P, Wang X, Wu H et al (2017) Glutamate alleviates muscle protein loss by modulating TLR4, NODs, Akt/FOXO and mTOR signaling pathways in LPS-challenged piglets. PLoS ONE 12(8):e0182246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Wu G (2009) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 37:89–95

    Article  CAS  PubMed  Google Scholar 

  • Kirchgessner M, Roth FX, Paulicks BR (1993) Effects of adding glutamic acid to low protein diets for fattening pigs on criteria of growth and carcass composition. Agribiol Res 46:346–358

    CAS  Google Scholar 

  • Kong XF, Zhou XL, Feng ZM et al (2015) Dietary supplementation with monosodium l-glutamate modifies lipid composition and gene expression related to lipid metabolism in growing pigs fed a normal-or high-fat diet. Livest Sci 180:247–252

    Article  Google Scholar 

  • Krebs HA (1935) Metabolism of Amino Acids. IV. The synthesis of glutamine from glutamic acid and ammonia and the enzymic hydrolysis of glutamine in animal tissues. Biochem J 29:19511969

    Google Scholar 

  • Kvamme E, Tveit B, Svenneby G (1970) Glutaminase from pig renal cortex. I. Purification and general properties. J Biol Chem 245:1871–1877

    CAS  PubMed  Google Scholar 

  • Le Floc'h N, Sève B, Henry Y (1994) The addition of glutamic acid or protein to a threonine-deficient diet differentially affects growth performance and threonine dehydrogenase activity in fattening pigs. J Nutr 124:1987–1995

    Article  PubMed  Google Scholar 

  • Lei J, Feng DY, Zhang YL et al (2012) Nutritional and regulatory role of branched-chain amino acids in lactation. Front Biosci 17:2725–2739

    Article  CAS  Google Scholar 

  • Li P, Knabe DA, Kim SW et al (2009) Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J Nutr 139:1502–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XL, Rezaei R, Li P et al (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Lien KA, Sauer WC, Fenton M (1997) Mucin output in ileal digesta of pigs fed a protein-free diet. Z Ernährungswiss 36:182–190

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Zhang B, Yu C et al (2014) L-Glutamate supplementation improves small intestinal architecture and enhances the expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets. PLoS ONE 9(11):e111950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link L, Weidmann P, Probst P et al (1985) Renal handling of norepinephrine and epinephrine in the pig. Pflugers Arch 405:66–69

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Peng J, Xiong Y et al (2002) Effects of dietary glutamine and glutamate supplementation on small intestinal structure, active absorption and DNA, RNA concentrations in skeletal muscle tissue of weaned piglets during d 28 to 42 of age. Asian Aust J Anim Sci 15:238–242

    Article  CAS  Google Scholar 

  • Lydyard P, Grossi C (1989) Cells involved in the immune system. In: Roitt I, Brostoff J, Male D (eds) Immunology. Gower Medical Publishing, New York, pp 2.1–2.18

    Google Scholar 

  • Manjarin R, Bequette BJ, Wu G et al (2014) Linking our understanding of mammary gland metabolism to amino acid nutrition. Amino Acids 46:2447–2462

    Article  CAS  PubMed  Google Scholar 

  • Manso HE, Filho HC, de Carvalho LE et al (2012) Glutamine and glutamate supplementation raise milk glutamine concentrations in lactating gilts. J Anim Sci Biotechnol 3(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo RD, Wu G, Moon HK et al (2008) Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J Anim Sci 86:827–835

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Nakamura E, Nakamura H et al (2013) The production of free glutamate in milk requires the leucine transporter LAT1. Am J Physiol 305:C623–C631

    Article  CAS  Google Scholar 

  • Mavromichalis I, Parr TM, Gabert VM et al (2001) True ileal digestibility of amino acids in sow’s milk for 17-day-old pigs. J Anim Sci 79:707–713

    Article  CAS  PubMed  Google Scholar 

  • Maynard LA, Loosli JK, Hintz HF et al (1979) Animal nutrition. McGraw-Hill, New York

    Google Scholar 

  • McDonald P, Edwards RA, Greenhalgh JFD et al (2011) Animal nutrition, 7th edn. Prentice Hall, New York

    Google Scholar 

  • National Research Council (NRC (2012) Nutrient requirements of swine. National Academy Press, Washington, DC

    Google Scholar 

  • Nichols NL, Bertolo RF (2008) Luminal threonine concentration actually affects intestinal mucosal protein and mucin synthesis in piglets. J Nutr 138:1298–1303

    Article  CAS  PubMed  Google Scholar 

  • Patience JF, Rossoni-Serão MC, Gutiérrez NA (2015) A review of feed efficiency in swine: biology and application. J Anim Sci Biotechnol 6(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  • Reeds PJ, Burrin DG, Jahoor F et al (1996) Enteral glutamate is almost completely metabolized in first pas by the gastrointestinal tract of infant pigs. Am J Physiol 270:E413–E418

    CAS  PubMed  Google Scholar 

  • Reeds PJ, Burrin DG, Stoll B et al (1997) Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. Am J Physiol 273:E408–E415

    CAS  PubMed  Google Scholar 

  • Reeds PJ, Burrin DG, Stoll B et al (2000) Intestinal glutamate metabolism. J Nutr 130:978S–982S

    Article  CAS  PubMed  Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD et al (2013a) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923

    Article  CAS  PubMed  Google Scholar 

  • Rezaei R, Jia SC, San Gabriel A et al (2013b) Monosodium glutamate supplementation to the diet for lactating sows enhances growth performance and survival of suckling piglets. Amino Acids 45:596–597

    Google Scholar 

  • Santos de Aquino R, Dutra Junior WM, Manso HECC et al (2014) Glutamine and glutamate (AminoGut) supplementation influences sow colostrum and mature milk composition. Livest Sci 169:112–117

    Article  Google Scholar 

  • Satchithanandam S, Vargofcak-Apker M, Calvert RJ et al (1990) Alteration of gastro-intestinal mucin by fibre feeding in rats. J Nutr 120:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Self JT, Spencer TE, Johnson GA et al (2004) Glutamine synthesis in the developing porcine placenta. Biol Reprod 70:1444–1451

    Article  CAS  PubMed  Google Scholar 

  • Stegink LD, Filer LJ Jr, Baker GL (1973) Monosodium glutamate metabolism in the neonatal pig: effect of load on plasma, brain, muscle and spinal fluid free amino acid levels. J Nutr 103:1138–1145

    Article  CAS  PubMed  Google Scholar 

  • Stoll B, Burrin DG (2006) Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J Anim Sci 84(E. Suppl):E60–E72

    Article  PubMed  Google Scholar 

  • Stoll B, Burrin DG, Henry J et al (1999) Substrate oxidation by the portal drained viscera of fed pigs. Am J Physiol 277:E168–E175

    CAS  PubMed  Google Scholar 

  • Strathe AV, Bruun TS, Hansen CF (2017) Sows with high milk production had both a high feed intake and high body mobilization. Animal 11:1913–1921

    Article  CAS  PubMed  Google Scholar 

  • Town SC, Patterson JL, Pereira CZ et al (2005) Embryonic and fetal development in a commercial dam-line genotype. Anim Reprod Sci 85:301–316

    Article  CAS  PubMed  Google Scholar 

  • Treberg JR, Brosnan ME, Watford M et al (2010) On the reversibility of glutamate dehydrogenase and the source of hyperammonemia in the hyperinsulinism/hyper-ammonemia syndrome. Adv Enzyme Regul 50:34–43

    Article  PubMed  Google Scholar 

  • Wang TC (1989) Fuller MF (1989), The optimum dietary amino acid patterns for growing pigs. 1. Experiments by amino acid deletion. Br J Nutr 62:77–89

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Chen LX, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Watford M (2015) Glutamine and glutamate: nonessential or essential amino acids? Animal Nutrition 1:119–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber EK, Stalder KJ, Patience JF (2015) Wean-to-finish feeder space availability effects on nursery and finishing pig performance and total tract digestibility in a commercial setting when feeding dried distillers grains with solubles. J Anim Sci 93:1905–1915

    Article  CAS  PubMed  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2013) Amino Acids: Biochemistry and Nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Boca Raton

    Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrums and milk. J Nutr 124:415–424

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol 269:R621–R629

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu KK, Thiagarajan P (1996) Role of endothelium in thrombosis and hemostasis. Annu Rev Med 47:315–331

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Borbolla AG, Knabe DA (1994) The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J Nutr 124:2437–2444

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Tuo W et al (1996) Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol Reprod 54:1261–1265

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Davis PK, Flynn NE et al (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Haynes TE, Yan W et al (2001) Presence of glutamine:fructose-6-phosphate amidotransferase for glucosamine-6-phosphate synthesis in endothelial cells: effects of hyperglycaemia and glutamine. Diabetologia 44:196–202

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Wallace JM et al (2006) Intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2010) Functional amino acids in swine nutrition and production. In: Doppenberg J (ed) Dynamics in animal nutrition. Wageningen Academic Publishers, The Netherlands, pp 69–98

    Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2011) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2013) Maternal and fetal amino acid metabolism in gestating sows. Soc Reprod Fertil Suppl 68:185–198

    Google Scholar 

  • Wu G, Bazer FW, Dai ZL et al (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2017) Functional amino acids in the development of the pig placenta. Mol Reprod Dev 84:879–882

    Article  CAS  Google Scholar 

  • Ytrebo LM, Sen S, Rose C et al (2006) Interorgan ammonia, glutamate, and glutamine trafficking in pigs with acute liver failure. Am J Physiol 291:G373–G381

    Google Scholar 

  • Zhang J, Yin Y, Shu XG et al (2013) Oral administration of MSG increases expression of glutamate receptors and transporters in the gastrointestinal tract of young piglets. Amino Acids 45:1169–1177

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman DR (1975) Glutamic acid and tryptophan additions to a low-protein pig starter. J Anim Sci 40:871–874

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by Grants from the National Key R&D Program of China (2016YFD0501210), Natural Science Foundation of Hubei Province (2016CFA070), Hubei Provincial Technology and Innovation Program (2016ABA121), the Program of National Agricultural Research Outstanding Talents of China (2015), Hubei Hundred Talent program, Agriculture and Food Research Initiative Competitive Grants (2014-67015-21770 and 2015-67015-23276) from the USDA National Institute of Food and Agriculture, and Texas A&M AgriLife Research (H-8200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

This article reviews published studies and does not require either the approval of animal use or human consent.

Additional information

Handling Editor: J. D. Wade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Wu, G. l-Glutamate nutrition and metabolism in swine. Amino Acids 50, 1497–1510 (2018). https://doi.org/10.1007/s00726-018-2634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2634-3

Keywords

Navigation