Skip to main content

Advertisement

Log in

Endogenous and food-derived polyamines: determination by electrochemical sensing

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Polyamines (PAs) are involved in a variety of fundamental physio-pathologic processes. The concentration of these polycations in organs and tissues depends on their endogenous production and oxidation rates, and on their intake from foods. Besides being largely accepted as markers for the progress of several pathologies, PAs may exert themselves different effects on humans, ranging from being positive to be drastically detrimental depending on the organism conditions. Thus, if the determination of polyamines content in tissue samples is of great importance as they could be indicators of several diseases, their quantification in food is fundamental for modulating the diet to respond to a specific human health status. Thus, the determination of PA content in food is increasingly urgent. Standard analytical methods for polyamine quantification are mainly based on chromatography, where high-performance liquid chromatography and gas chromatography are the most often used, involving pre-column or post-column derivatization techniques. Driven by the growing need for rapid in situ analyses, electrochemical biosensors, comprising various combinations of different enzymes or nanomaterials for the selective bio-recognition and detection, are emerging as competitors of standard detection systems. The present review is aimed at providing an up-to-date overview on the recent progresses in the development of sensors and biosensors for the detection of polyamines in human tissues and food samples. Basic principles of different electrochemical (bio)sensor formats are reported and the applications in human tissues and in foods was evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AUH:

Agmatinase

CA:

Chronoamperometry

CP:

Carbon paste

CV:

Cyclic voltammetry

DPV:

Differential pulse voltammetry

FIA:

Flow injection analysis

GC:

Glassy carbon electrode

SPCE:

Screen printed carbon electrodes

SPE:

Screen printed electrode

SWV:

Square wave voltammetry

TTF:

Tetrathiafulvalene

References

  • Aflaki F, Ghoulipour V, Saemian N, Shiebani S, Salahinejad M (2017) Chemometrics approaches to monitoring of biogenic amines changes in three fish species. J Aquat Food Prod Technol 26(1):43–53

    Article  CAS  Google Scholar 

  • Agostinelli E (2016) Polyamines and transglutaminases: future perspectives. Amino Acids 48(10):2273–2281

    Article  PubMed  CAS  Google Scholar 

  • Al-Hadithi NN, Saad B (2011) Determination of underivatized polyamines: a review of analytical methods and applications. Anal Lett 44(13):2245–2264

    Article  CAS  Google Scholar 

  • Ali MA, Poortvliet E, Strömberg R, Yngve A (2011) Polyamines in foods: development of a food database. Food Nutr Res 55:5572

    Article  CAS  Google Scholar 

  • Alonso-Lomillo MA, Domínguez-Renedo O, Matos P, Arcos-Martínez MJ (2010) Disposable biosensors for determination of biogenic amines. Anal Chim Acta 665(1):26–31

    Article  PubMed  CAS  Google Scholar 

  • Apetrei IM, Apetrei C (2016) Application of voltammetric e-tongue for the detection of ammonia and putrescine in beef products. Sens Actuator B Chem 234:371–379

    Article  CAS  Google Scholar 

  • Bachrach U (2010) The early history of polyamine research. Plant Physiol Biochem 48(7):490–495

    Article  PubMed  CAS  Google Scholar 

  • Bae D-H, Lane DJR, Jansson PJ, Richardson DR (2018) The old and new biochemistry of polyamines. BBA Gen Subj. https://doi.org/10.1016/j.bbagen.2018.06.004

    Article  Google Scholar 

  • Bardócz S (1995) Polyamines in food and their consequences for food quality and human health. Trends Food Sci Tech 6(10):341–346

    Article  Google Scholar 

  • Benkerroum N (2016) Biogenic amines in dairy products: origin incidence and control means. Compr Rev Food Sci F 15(4):801–826

    Article  Google Scholar 

  • Biji K, Ravishankar C, Venkateswarlu R, Mohan C, Gopal T (2016) Biogenic amines in seafood: a review. J Food Sci Technol 53(5):2210–2218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boffi A, Favero G, Federico R, Macone A, Antiochia R, Tortolini C, Mazzei F (2015) Amine oxidase-based biosensors for spermine and spermidine determination. Anal Bioanal Chem 407(4):1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Bóka B, Adányi N, Szamos J, Virág D, Kiss A (2012a) Putrescine biosensor based on putrescine oxidase from Kocuria rosea. Enzyme Microb Technol 51(5):258–262

    Article  PubMed  CAS  Google Scholar 

  • Bóka B, Adányi N, Virág D, Sebela M, Kiss A (2012b) Spoilage detection with biogenic amine biosensors comparison of different enzyme electrodes. Electroanalysis 24(1):181–186

    Article  CAS  Google Scholar 

  • Bonaiuto E, Magro M, Baratella D, Jakubec P, Sconcerle E, Terzo M, Vianello F (2016) Ternary hybrid γ-Fe2 O3/Cr(VI)/amine oxidase nanostructure for electrochemical sensing: application for polyamine detection in tumor tissue. Chem Eur J 22(20):6846–6852

    Article  PubMed  CAS  Google Scholar 

  • Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108(2):423–461

    Article  PubMed  CAS  Google Scholar 

  • Bulushi IA, Poole S, Deeth HC, Dykes GA (2009) Biogenic amines in fish: roles in intoxication spoilage and nitrosamine formation—a review. Crit Rev Food Sci 49(4):369–377

    Article  CAS  Google Scholar 

  • Carelli D, Centonze D, Palermo C, Quinto M, Rotunno T (2007) An interference free amperometric biosensor for the detection of biogenic amines in food products. Biosens Bioelectron 23(5):640–647

    Article  PubMed  CAS  Google Scholar 

  • Carsol M, Mascini M (1999) Diamine oxidase and putrescine oxidase immobilized reactors in flow injection analysis: a comparison in substrate specificity. Talanta 50(1):141–148

    Article  PubMed  CAS  Google Scholar 

  • Cervelli M, Amendola R, Polticelli F, Mariottini P (2012) Spermine oxidase: ten years after. Amino Acids 42(2):441–450

    Article  PubMed  CAS  Google Scholar 

  • Chandran GT, Li X, Ogata A, Penner RM (2017) Electrically transduced sensors based on nanomaterials (2012–2016). Anal Chem 89(1):249–275

    Article  PubMed  CAS  Google Scholar 

  • Chauhan N, Jain U, Gandotra R, Hooda V (2017) Zeolites-AuNPs assembled interface towards amperometric biosensing of spermidine. Electrochim Acta 230:106–115

    Article  CAS  Google Scholar 

  • Chemnitius GC, Bilitewski U (1996) Development of screen-printed enzyme electrodes for the estimation of fish quality. Sens Actuator B Chem 32(2):107–113

    Article  CAS  Google Scholar 

  • Chemnitius GC, Suzuki M, Isobe K, Kimura J, Karube I, Schmid RD (1992) Thin-film polyamine biosensor: substrate specificity and application to fish freshness determination. Anal Chim Acta 263(1):93–100

    Article  CAS  Google Scholar 

  • Chen H, Huang Y, Hsu H, Lin C, Chen W, Lin C, Tsai Y (2010) Determination of histamine and biogenic amines in fish cubes (Tetrapturus angustirostris) implicated in a food-borne poisoning. Food Control 21(1):13–18

    Article  CAS  Google Scholar 

  • Cipolla B, Guillí F, Moulinoux J (2003) Polyamine-reduced diet in metastatic hormone-refractory prostate cancer (HRPC) patients. Biochem Soc Trans 31(2):384–387

    Article  PubMed  CAS  Google Scholar 

  • Cipolla BG, Havouis R, Moulinoux JP (2007) Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids 33(2):203–212

    Article  PubMed  CAS  Google Scholar 

  • Compagnone D, Isoldi G, Moscone D, Palleschi G (2001) Amperometric detection of biogenic amines in cheese using immobilised diamine oxidase. Anal Lett 34(6):841–854

    Article  CAS  Google Scholar 

  • Cooke M, Leeves N, White C (2003) Time profile of putrescine cadaverine indole and skatole in human saliva. Arch Oral Biol 48(4):323–327

    Article  PubMed  CAS  Google Scholar 

  • Damiani E, Wallace HM (2018) Polyamines and cancer. Methods Mol Biol 1694:469–488

    Article  PubMed  Google Scholar 

  • Das KC, Misra HP (2004) Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262(1–2):127–133

    Article  PubMed  CAS  Google Scholar 

  • De Borba BM, Rohrer JS (2007) Determination of biogenic amines in alcoholic beverages by ion chromatography with suppressed conductivity detection and integrated pulsed amperometric detection. J Chromatogr A 1155(1):22–30

    Article  PubMed  CAS  Google Scholar 

  • Douki T, Bretonniere Y, Cadet J (2000) Protection against radiation-induced degradation of DNA bases by polyamines. Radiat Res 153(1):29–35

    Article  PubMed  CAS  Google Scholar 

  • Draisci R, Volpe G, Lucentini L, Cecilia A, Federico R, Palleschi G (1998) Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies. Food Chem 62(2):225–232

    Article  CAS  Google Scholar 

  • Esti M, Volpe G, Massignan L, Compagnone D, La Notte E, Palleschi G (1998) Determination of amines in fresh and modified atmosphere packaged fruits using electrochemical biosensors. J Agric Food Chem 46(10):4233–4237

    Article  CAS  Google Scholar 

  • Fahrmann JF, Grapov D, Wanichthanarak K, De Felice BC, Salemi MR, Rom WN, Miyamoto S (2017) Integrated metabolomics and proteomics highlight altered nicotinamide and polyamine pathways in lung adenocarcinoma. Carcinogenesis 38(3):271–280

    PubMed Central  CAS  Google Scholar 

  • Favaro G, Pastore P, Saccani G, Cavalli S (2007) Determination of biogenic amines in fresh and processed meat by ion chromatography and integrated pulsed amperometric detection on au electrode. Food Chem 105(4):1652–1658

    Article  CAS  Google Scholar 

  • Fusco MD, Federico R, Boffi A, Macone A, Favero G, Mazzei F (2011) Characterization and application of a diamine oxidase from Lathyrus sativus as component of an electrochemical biosensor for the determination of biogenic amines in wine and beer. Anal Bioanal Chem 401(2):707–716

    Article  PubMed  CAS  Google Scholar 

  • Gardini F, Özogul Y, Suzzi G, Tabanelli G, Özogul F (2016) Technological factors affecting biogenic amine content in foods: a review. Front Microbiol 7:1218

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldberg S, Kozlovsky A, Gordon D, Gelernter I, Sintov A, Rosenberg M (1994) Cadaverine as a putative component of oral malodor. J Dent Res 73(6):1168–1172

    Article  PubMed  CAS  Google Scholar 

  • Grancara S, Ohkubo S, Artico M, Ciccariello M, Manente S, Bragadin M, Agostinelli E (2016) Milestones and recent discoveries on cell death mediated by mitochondria and their interactions with biologically active amines. Amino Acids 48(10):2313–2326

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2007) Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves. Biometals 20(2):185–195

    Article  PubMed  CAS  Google Scholar 

  • Gumpu MB, Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB (2016) Determination of putrescine in tiger prawn using an amperometric biosensor based on immobilization of diamine oxidase onto ceria nanospheres. Food Bioprocess Technol 9(4):717–724

    Article  CAS  Google Scholar 

  • Gyurcsányi RE, Cristalli A, Nagy G, Nagy L, Corder C, Pendley BD, Lindner E (2001) Analytical performance characteristics of thin and thick film amperometric microcells. Fresenius J Anal Chem 369(3–4):286–294

    Article  PubMed  Google Scholar 

  • Häkkinen MR, Roine A, Auriola S, Tuokko A, Veskimäe E, Keinänen TA, Vepsäläinen J (2013) Analysis of free mono- and diacetylated polyamines from human urine by LC–MS/MS. J Chromatogr B 941:81–89

    Article  CAS  Google Scholar 

  • Hamon L, Savarin P, Pastré D (2016) Polyamine signal through gap junctions: a key regulator of proliferation and gap-junction organization in mammalian tissues? BioEssays 38(6):498–507

    Article  PubMed  CAS  Google Scholar 

  • Handa AK, Tahira F, Mattoo AK (2018) Polyamines: bio-molecules with diverse functions in plant and human health and disease. Front Chem 6(10):1–18

    Google Scholar 

  • Hasanzadeh M, Bahrami A, Alizadeh M, Shadjou N (2013) Magnetic nanoparticles loaded on mobile crystalline material-41: preparation characterization and application as a novel material for the construction of an electrochemical nanosensor. RSC Adv 3(46):24237–24246

    Article  CAS  Google Scholar 

  • Hashimoto T, Mitani A, Yamada Y (1990) Diamine oxidase from cultured roots of Hyoscyamus niger: its function in tropane alkaloid biosynthesis. Plant Physiol 93(1):216–221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henao-Escobar W, Domínguez-Renedo O, Asunción Alonso-Lomillo M, Julia Arcos-Martínez M (2013) Simultaneous determination of cadaverine and putrescine using a disposable monoamine oxidase based biosensor. Talanta 117:405–411

    Article  PubMed  CAS  Google Scholar 

  • Henao-Escobar W, Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ (2015) Resolution of quaternary mixtures of cadaverine histamine putrescine and tyramine by the square wave voltammetry and partial least squares method. Talanta 143:97–100

    Article  PubMed  CAS  Google Scholar 

  • Henao-Escobar W, del Torno-de Román L, Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ (2016) Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine. Food Chem 190:818–823

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Cázares AS, Aristoy M, Toldrá F (2011) An enzyme sensor for the determination of total amines in dry-fermented sausages. J Food Eng 106(2):166–169

    Article  CAS  Google Scholar 

  • Herrero A, Sanllorente S, Reguera C, Ortiz MC, Sarabia LA (2016) A new multiresponse optimization approach in combination with a D-optimal experimental design for the determination of biogenic amines in fish by HPLC-FLD. Anal Chim Acta 945:31–38

    Article  PubMed  CAS  Google Scholar 

  • Hierlemann A, Gutierrez-Osuna R (2008) Higher-order chemical sensing. Chem Rev 108(2):563–613

    Article  PubMed  CAS  Google Scholar 

  • Hulanicki A, Glab S, Ingman F (1991) Chemical sensors: definitions and classification. Pure Appl Chem 63(9):1247–1250

    Article  Google Scholar 

  • Hussain T, Tan B, Ren W, Rahu N, Kalhoro DH, Yin Y (2017) Exploring polyamines: functions in embryo/fetal development. Anim Nutr 3(1):7–10

    Article  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42(1):39–51

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (2015) Modulation of protein synthesis by polyamines. IUBMB Life 67(3):160–169

    Article  PubMed  CAS  Google Scholar 

  • Inaba Y, Tokishita S, Hamada-Sato N, Kobayashi T, Imada C, Yamagata H, Watanabe E (2004) Development of agmatine sensor using the combination of putrescine oxidase and agmatinase for squid freshness. Biosens Bioelectron 20(4):833–840

    Article  PubMed  CAS  Google Scholar 

  • Jairath G, Singh P, Dabur R, Rani M, Chaudhari M (2015) Biogenic amines in meat and meat products and its public health significance: a review. J Food Sci Technol 52(11):6835–6846

    Article  CAS  Google Scholar 

  • Jeevanandam M, Petersen SR (2001) Clinical role of polyamine analysis: problem and promise. Curr Opin Clin Nutr 4(5):385–390

    Article  CAS  Google Scholar 

  • Joshi MS, Ferguson TB, Johnson FK, Johnson RA, Parthasarathy S, Lancaster JR (2007) Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cells. Proc Natl Acad Sci USA 104(24):9982–9987

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M (2009) Spermidine surprise for a long life. Nat Cell Biol 11(11):1277–1278

    Article  PubMed  CAS  Google Scholar 

  • Kalač P (2006) Biologically active polyamines in beef pork and meat products: a review. Meat Sci 73(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Kalač P (2014) Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem 161:27–39

    Article  PubMed  CAS  Google Scholar 

  • Kalač P, Krausová P (2005) A review of dietary polyamines: formation implications for growth and health and occurrence in foods. Food Chem 90(1):219–230

    Article  CAS  Google Scholar 

  • Kalač P, Krízek M (2003) A review of biogenic amines and polyamines in beer. J Inst Brew 109(2):123–128

    Article  Google Scholar 

  • Kivirand K, Rebane R, Rinken T (2011) A simple biosensor for biogenic diamines, comprising amine oxidase—containing threads and oxygen sensor. Sens Lett 9(5):1794–1800

    Article  CAS  Google Scholar 

  • Kuo PC, Lien CW, Mao JY, Unnikrishnan B, Chang HT, Lin HJ, Huang CC (2018) Detection of urinary spermine by using silver-gold/silver chloride nanozymes. Anal Chim Acta 1009:89–97

    Article  PubMed  CAS  Google Scholar 

  • Ladero V, Calles-Enriquez M, Fernandez M, Alvarez MA (2010) Toxicological effects of dietary biogenic amines. Curr Nutr Food Sci 6(2):145–156

    Article  CAS  Google Scholar 

  • Lagishetty CV, Naik SR (2008) Polyamines: potential anti-inflammatory agents and their possible mechanism of action. Indian J Pharmacol 40(3):121–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lapa-Guimarães J, Pickova J (2004) New solvent systems for thin-layer chromatographic determination of nine biogenic amines in fish and squid. J Chromatogr A 1045(1):223–232

    Article  PubMed  CAS  Google Scholar 

  • Larqué E, Sabater-Molina M, Zamora S (2007) Biological significance of dietary polyamines. Nutrition 23(1):87–95

    Article  PubMed  CAS  Google Scholar 

  • Latorre-Moratalla ML, Bosch-Fusté J, Lavizzari T, Bover-Cid S, Veciana-Nogués MT, Vidal-Carou MC (2009) Validation of an ultra high pressure liquid chromatographic method for the determination of biologically active amines in food. J Chromatogr A 1216(45):7715–7720

    Article  PubMed  CAS  Google Scholar 

  • Leonardo S, Campàs M (2016) Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine putrescine and cadaverine using magnetic beads as immobilization supports. Microchim Acta 183(6):1881–1890

    Article  CAS  Google Scholar 

  • Lin M, Chen C, Chen Z (2011) Development of structure-specific electrochemical sensor and its application for polyamines determination. Electrochim Acta 56(3):1069–1075

    Article  CAS  Google Scholar 

  • Lin J, Kukkola J, Sipola T, Raut D, Samikannu A, Mikkola J, Kordas K (2015) Trifluoroacetylazobenzene for optical and electrochemical detection of amines. J Mater Chem A 3(8):4687–4694

    Article  CAS  Google Scholar 

  • Liu J, Honda C, Moriguchi T (2006) Involvement of polyamine in floral and fruit development. JARQ Jpn Agric Res Q 40(1):51–58

    Article  CAS  Google Scholar 

  • Liu SF, Petty AR, Sazama GT, Swager TM (2015) Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage. Angew Chem Int Ed 54(22):6554–6557

    Article  CAS  Google Scholar 

  • Loizzo MR, Menichini F, Picci N, Puoci F, Spizzirri UG, Restuccia D (2013) Technological aspects and analytical determination of biogenic amines in cheese. Trends Food Sci Technol 30(1):38–55

    Article  CAS  Google Scholar 

  • Lovaas E (1996) Antioxidative and metal-chelating effects of polyamines. Adv Pharmacol 38:119–149

    Article  Google Scholar 

  • Luk GD, Bayless TM, Baylin SB (1980) Diamine oxidase (histaminase): a circulating marker for rat intestinal mucosal maturation and integrity. J Clin Invest 66(1):66–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26(5):492–500

    Article  PubMed  CAS  Google Scholar 

  • Luong JHT, Male KB, Glennon JD (2009) Boron-doped diamond electrode: synthesis characterization functionalization and analytical applications. Analyst 134(10):1965–1979

    Article  PubMed  CAS  Google Scholar 

  • Lyons P (2015) Premature rupture of membranes. In: Skolnik NS (ed) Obstetrics in family medicine (current clinical practice), 1st edn. Springer, New York, pp 65–70

    Chapter  Google Scholar 

  • Magro M, Baratella D, Bonaiuto E, de Almeida Roger J, Vianello F (2018) New perspectives on biomedical applications of iron oxide nanoparticles. Curr Med Chem 25(4):540–555

    Article  PubMed  CAS  Google Scholar 

  • Male KB, Bouvrette P, Luong JH, Gibbs BF (1996) Amperometric biosensor for total histamine putrescine and cadaverine using diamine oxidase. J Food Sci 61(5):1012–1016

    Article  CAS  Google Scholar 

  • Marzouk SAM, Xu CX, Cosofret BR, Buck RP, Hassan SSM, Neuman MR, Sprinkle RH (1998) Amperometric flow injection determination of putrescine and putrescine oxidase. Anal Chim Acta 363(1):57–65

    Article  CAS  Google Scholar 

  • McGrath TF, Elliott CT, Fodey TL (2012) Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 403(1):75–92

    Article  PubMed  CAS  Google Scholar 

  • Michael AJ (2016) Biosynthesis of polyamines and polyamine-containing molecules. Biochem J 473(15):2315–2329

    Article  PubMed  CAS  Google Scholar 

  • Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M (2015) Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 427(21):3389–3406

    Article  PubMed  CAS  Google Scholar 

  • Min JZ, Matsumoto A, Li G, Jiang Y, Yu H, Todoroki K, Toyo’oka T (2014) A quantitative analysis of the polyamine in lung cancer patient fingernails by LC–ESI–MS/MS. Biomed Chromatogr 28(4):492–499

    Article  PubMed  CAS  Google Scholar 

  • Mohammed GI, Bashammakh AS, Alsibaai AA, Alwael H, El-Shahawi MS (2016) A critical overview on the chemistry clean-up and recent advances in analysis of biogenic amines in foodstuffs. Trend Anal Chem 78:84–94

    Article  CAS  Google Scholar 

  • Moinard C, Cynober L, de Bandt J (2005) Polyamines: metabolism and implications in human diseases. Clin Nutr 24(2):184–197

    Article  PubMed  CAS  Google Scholar 

  • Moret S, Smela D, Populin T, Conte LS (2005) A survey on free biogenic amine content of fresh and preserved vegetables. Food Chem 89(3):355–361

    Article  CAS  Google Scholar 

  • Morier-Teissier E, Drieu K, Rips R (1988) Determination of polyamines by pre-column derivatization and electrochemical detection. J Liq Chromatogr 11(8):1627–1650

    Article  CAS  Google Scholar 

  • Morsy MK, Zór K, Kostesha N, Alstrøm TS, Heiskanen A, El-Tanahi H, Emnéus J (2016) Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control 60:346–352

    Article  CAS  Google Scholar 

  • Mureşan L, Valera RR, Frébort I, Popescu IC, Csöregi E, Nistor M (2008) Amine oxidase amperometric biosensor coupled to liquid chromatography for biogenic amines determination. Microchim Acta 163(3–4):219–225

    Article  CAS  Google Scholar 

  • Murray-Stewart TR, Woster PM, Casero RA (2016) Targeting polyamine metabolism for cancer therapy and prevention. Biochem J 473(19):2937–2953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagy L, Nagy G, Gyurcsányi RE, Neuman MR, Lindner E (2002) Development and study of an amperometric biosensor for the in vitro measurement of low concentration of putrescine in blood. J Biochem Biophys Methods 53(1):165–175

    Article  PubMed  CAS  Google Scholar 

  • Nelson TM, Borgogna JC, Brotman RM, Ravel J, Walk ST, Yeoman CJ (2015) Vaginal biogenic amines: biomarkers of bacterial vaginosis or precursors to vaginal dysbiosis? Front Physiol 6:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Niculescu M, Nistor C, Frébort I, Pec P, Mattiasson B, Csöregi E (2000) Redox hydrogel-based amperometric bienzyme electrodes for fish freshness monitoring. Anal Chem 72(7):1591–1597

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa H, Tabata T, Kitani S (2012) Simple detection method of biogenic amines in decomposed fish by intramolecular excimer fluorescence. Food Nutr Sci 3:1020–1026

    CAS  Google Scholar 

  • Nishimura K, Shiina R, Kashiwagi K, Igarashi K (2006) Decrease in polyamines with aging and their ingestion from food and drink. J Biochem 139(1):81–90

    Article  PubMed  CAS  Google Scholar 

  • Nychas GE, Panagou EZ, Mohareb F (2016) Novel approaches for food safety management and communication. Curr Opin Food Sci 12:13–20

    Article  Google Scholar 

  • Okuma H, Okazaki W, Usami R, Horikoshi K (2000) Development of the enzyme reactor system with an amperometric detection and application to estimation of the incipient stage of spoilage of chicken. Anal Chim Acta 411(1):37–43

    Article  CAS  Google Scholar 

  • Osorio S, Fernie AR (2013) Biochemistry of fruit ripening. In: Seymour GB, Poole M, Giovannoni JJ, Tucker GA (eds) The molecular biology and biochemistry of fruit ripening. Blackwell Publishing Ltd, Hoboken, pp 1–19

    Google Scholar 

  • Parchami R, Kamalabadi M, Alizadeh N (2017) Determination of biogenic amines in canned fish samples using head-space solid phase microextraction based on nanostructured polypyrrole fiber coupled to modified ionization region ion mobility spectrometry. J Chromatogr A 1481:37–43

    Article  PubMed  CAS  Google Scholar 

  • Park MH, Igarashi K (2013) Polyamines and their metabolites as diagnostic markers of human diseases. Biomol Ther 21(1):1–9

    Article  CAS  Google Scholar 

  • Pasini A, Caldarera C, Giordano E (2014) Chromatin remodeling by polyamines and polyamine analogs. Amino Acids 46(3):595–603

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE (2013) Toxicity of polyamines and their metabolic products. Chem Res Toxicol 26(12):1782–1800

    Article  PubMed  CAS  Google Scholar 

  • Piermarini S, Volpe G, Federico R, Moscone D, Palleschi G (2010) Detection of biogenic amines in human saliva using a screen-printed biosensor. Anal Lett 43(7–8):1310–1316

    Article  CAS  Google Scholar 

  • Pineda R, Knapp AD, Hoekstra JC, Johnson DC (2001) Integrated square-wave electrochemical detection of biogenic amines in soybean seeds following their separations by liquid chromatography. Anal Chim Acta 449(1):111–117

    Article  CAS  Google Scholar 

  • Pinto L, Díaz Nieto CH, Zón MA, Fernández H, de Araujo MCU (2016) Handling time misalignment and rank deficiency in liquid chromatography by multivariate curve resolution: quantitation of five biogenic amines in fish. Anal Chim Acta 902:59–69

    Article  PubMed  CAS  Google Scholar 

  • Pisoschi AM (2013) Biosensors as bio-based materials in chemical analysis: a review. J Biobased Mater Bioenergy 7(1):19–38

    Article  CAS  Google Scholar 

  • Pohanka M (2018) Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials 11(3):448

    Article  PubMed Central  Google Scholar 

  • Prester L (2011) Biogenic amines in fish products and shellfish: a review. Food Addit Contam A 28(11):1547–1560

    Article  CAS  Google Scholar 

  • Ramani D, De Bandt JP, Cynober L (2014) Aliphatic polyamines in physiology and diseases. Clin Nutr 33(1):14–22

    Article  PubMed  CAS  Google Scholar 

  • Ramot Y, Tiede S, Bíró T, Abu Bakar MH, Sugawara K, Philpott MP, Paus R (2011) Spermidine promotes human hair growth and is a novel modulator of human epithelial stem cell functions. PLoS ONE 6(7):e22564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy B, Salm E, Bashir R (2016) Electrical chips for biological point-of-care detection. Annu Rev Biomed Eng 18(1):329–355

    Article  PubMed  CAS  Google Scholar 

  • Restuccia D, Spizzirri U, Puoci F, Parosi OI, Curcio M, Picci N (2014) Accumulation of biogenic amines in foods: hazard identification and control options. In: Ravishankar V, Jamuna Bai R, Jamuna Bai A (eds) Microbial food safety and preservation techniques. CRC Press Taylor & Francis Group, Boca Raton, pp 53–74

    Chapter  Google Scholar 

  • Rivat C, Richebé P, Laboureyras E, Laulin J, Havouis R, Noble F, Simonnet G (2008) Polyamine deficient diet to relieve pain hypersensitivity. Pain 137(1):125–137

    Article  PubMed  CAS  Google Scholar 

  • Rochette J-F, Sacher E, Meunier M, Luong JHT (2005) A mediatorless biosensor for putrescine using multiwalled carbon nanotubes. Anal Biochem 336(2):305–311

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Méndez ML, Gay M, Apetrei C, De Saja JA (2009) Biogenic amines and fish freshness assessment using a multisensor system based on voltammetric electrodes comparison between CPE and screen-printed electrodes. Electrochim Acta 54(27):7033–7041

    Article  CAS  Google Scholar 

  • Romero R, Bagur MG, Sánchez-Viñas M, Gázquez D (2003) The influence of the brewing process on the formation of biogenic amines in beers. Anal Bioanal Chem 376(2):162–167

    Article  PubMed  CAS  Google Scholar 

  • Romero N, Benítez J, Garcia D, González A, Bennun L, García-Robles MA, Uribe E (2017) Mammalian agmatinases constitute unusual members in the family of Mn2+-dependent ureahydrolases. J Inorg Biochem 166:122–125

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Capillas C, Jiménez-Colmenero F (2004) Biogenic amines in meat and meat products. Crit Rev Food Sci 44(7–8):489–499

    CAS  Google Scholar 

  • Saby C, Nguyen T, Luong J (2004) An electrochemical flow analysis system for putrescine using immobilized putrescine oxidase and horseradish peroxidase. Electroanalysis 16(4):260–267

    Article  CAS  Google Scholar 

  • Sadik OA, Aluoch AO, Zhou A (2009) Status of biomolecular recognition using electrochemical techniques. Biosens Bioelectron 24(9):2749–2765

    Article  PubMed  CAS  Google Scholar 

  • Saghatforoush L, Hasanzadeh M, Shadjou N (2014) ß-Cyclodextrin/graphene oxide grafted sulfonic acid: application for electro-oxidation and determination of cadaverine in fish samples. J Electroanal Chem 714–715:79–84

    Article  CAS  Google Scholar 

  • Samková E, Dadáková E, Pelikánová T (2013) Changes in biogenic amine and polyamine contents in smear-ripened cheeses during storage. Eur Food Res Technol 237(3):309–314

    Article  CAS  Google Scholar 

  • Scarciglia L, Compagnone D, Federici G, Palleschi G (1998) Electrochemical probe for polyamines detection in biological fluids. Analysis 26(5):219–222

    CAS  Google Scholar 

  • Seiler N (1995) Polyamine oxidase properties and functions. In: Yu PM, Tipton KF, Boulton AA (eds) Progress in brain research. Elsevier, Amsterdam, pp 333–344

    Google Scholar 

  • Seiler N, Delcros JG, Moulinoux JP (1996) Polyamine transport in mammalian cells an update. Int J Biochem Cell Biol 28(8):843–861

    Article  PubMed  CAS  Google Scholar 

  • Self RL, Wu W, Marks HS (2011) Simultaneous quantification of eight biogenic amine compounds in tuna by matrix solid-phase dispersion followed by HPLC-orbitrap mass spectrometry. J Agric Food Chem 59(11):5906–5913

    Article  PubMed  CAS  Google Scholar 

  • Shumilina E, Slizyte R, Mozuraityte R, Dykyy A, Stein TA, Dikiy A (2016) Quality changes of salmon by-products during storage: assessment and quantification by NMR. Food Chem 211:803–811

    Article  PubMed  CAS  Google Scholar 

  • Soda K (2011) The mechanisms by which polyamines accelerate tumor spread. J Exp Clin Cancer Res 30(1):95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soda K, Dobashi Y, Kano Y, Tsujinaka S, Konishi F (2009) Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp Gerontol 44(11):727–732

    Article  PubMed  CAS  Google Scholar 

  • Spener F, Meusel M, Siegmann-Thoss C (1997) Biosensors based on flow-through systems. In: Scheller FW, Schubert F, Fedrowitz J (eds) Frontiers in biosensoric II°/practical applications. Birkhȁuser Verlag, Basel, pp 27–44

    Google Scholar 

  • Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M (2010) Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral breast and pancreatic cancer-specific profiles. Metabolomics 6(1):78–95

    Article  PubMed  CAS  Google Scholar 

  • Suh JW, Lee SH, Chung BC, Park J (1997) Urinary polyamine evaluation for effective diagnosis of various cancers. J Chromatogr B 688(2):179–186

    Article  CAS  Google Scholar 

  • Sun X, Yang X, Wang E (2003) Determination of biogenic amines by capillary electrophoresis with pulsed amperometric detection. J Chromatogr A 1005(1):189–195

    Article  PubMed  CAS  Google Scholar 

  • Tadolini B (1988) Polyamine inhibition of lipoperoxidation the influence of polyamines on iron oxidation in the presence of compounds mimicking phospholipid polar heads. Biochem J 249(1):33–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takayama T, Tsutsui H, Shimizu I, Toyama T, Yoshimoto N, Endo Y, Toyo’oka T (2016) Diagnostic approach to breast cancer patients based on target metabolomics in saliva by liquid chromatography with tandem mass spectrometry. Clin Chim Acta 452:18–26

    Article  PubMed  CAS  Google Scholar 

  • Telsnig D, Terzic A, Krenn T, Kassarnig V, Kalcher K, Ortner A (2012) Development of a voltammetric amine oxidase-modified biosensor for the determination of biogenic amines in food. Int J Electrochem Sci 7:6893–6903

    CAS  Google Scholar 

  • Telsnig D, Kalcher K, Leitner A, Ortner A (2013) Design of an amperometric biosensor for the determination of biogenic amines using screen printed carbon working electrodes. Electroanalysis 25(1):47–50

    Article  CAS  Google Scholar 

  • Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131

    Article  PubMed  Google Scholar 

  • Tombelli S, Mascini M (1998) Electrochemical biosensors for biogenic amines: a comparison between different approaches. Anal Chim Acta 358(3):277–284

    Article  CAS  Google Scholar 

  • Torrigiani P, Bregoli AM, Ziosi V, Costa G (2008) Molecular and biochemical aspects underlying polyamine modulation of fruit development and ripening. Stewart Postharvest Rev 4(2):1–12

    Google Scholar 

  • Tsoi T, Chan C, Chan W, Chiu K, Wong W, Ng C, Wong K (2016) Urinary polyamines: a pilot study on their roles as prostate cancer detection biomarkers. PLoS ONE 11(9):e0162217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urbanova V, Magro M, Gedanken A, Baratella D, Vianello F, Zboril R (2014) Nanocrystalline iron oxides composites and related materials as a platform for electrochemical magnetic and chemical biosensors. Chem Mater 26(23):6653–6673

    Article  CAS  Google Scholar 

  • Valero D, Martı́nez-Romero D, Serrano M (2002) The role of polyamines in the improvement of the shelf life of fruit. Trends Food Sci Technol 13(6):228–234

    Article  CAS  Google Scholar 

  • Venugopal V (2002) Biosensors in fish production and quality control. Biosens Bioelectron 17(3):147–157

    Article  PubMed  CAS  Google Scholar 

  • Visciano P, Schirone M, Tofalo R, Suzzi G (2012) Biogenic amines in raw and processed seafood. Front Microbiol 3(188):1–10

    Google Scholar 

  • Wallace HM, Caslake R (2001) Polyamines and colon cancer. Eur J Gastroenterol Hepatol 13(9):1033–1039

    Article  PubMed  CAS  Google Scholar 

  • Wang CC, Billett E, Borchert A, Kuhn H, Ufer C (2013) Monoamine oxidases in development. Cell Mol Life Sci 70(4):599–630

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Asano M, Yamamoto K, Nagatsu T, Matsumoto T, Fujita K (1989) High performance liquid chromatography of biological polyamines using immobilized enzyme as post-column reactor followed by electrochemical detection. Biomed Chromatogr 3(5):187–191

    Article  PubMed  CAS  Google Scholar 

  • Wortham BW, Oliveira MA, Patel CN (2007) Polyamines in bacteria: pleiotropic effects yet specific mechanisms. In: Perry RD, Fetherston JD (eds) The genus Yersinia, advances in experimental medicine and biology, vol 603. Springer, New York, pp 106–115

    Chapter  Google Scholar 

  • Wu Y, Chen Y, Li L, Yang X, Yang S, Lin W, Deng J (2016) Study on biogenic amines in various dry salted fish consumed in china. J Ocean Univ China 15(4):681–689

    Article  CAS  Google Scholar 

  • Wunderlichová L, Buňková L, Koutný M, Jančová P, Buňka F (2014) Formation degradation and detoxification of putrescine by foodborne bacteria: a review. Compr Rev Food Sci Food Saf 13(5):1012–1030

    Article  CAS  Google Scholar 

  • Xu CX, Marzouk SAM, Cosofret VV, Buck RP, Neuman MR, Sprinkle RH (1997) Development of a diamine biosensor. Talanta 44(9):1625–1632

    Article  PubMed  CAS  Google Scholar 

  • Yakovleva M, Bhand S, Danielsson B (2013) The enzyme thermistor—a realistic biosensor concept. A critical review. Anal Chim Acta 766:1–12

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Feng B, He X, Li F, Ding Y, Fei J (2013) Carbon nanomaterial based electrochemical sensors for biogenic amines. Microchim Acta 180(11):935–956

    Article  CAS  Google Scholar 

  • Yano Y, Yokoyama K, Tamiya E, Karube I (1996) Direct evaluation of meat spoilage and the progress of aging using biosensors. Anal Chim Acta 32(2):269–276

    Article  Google Scholar 

  • Zambonin PG, Guerrieri A, Rotunno T, Palmisano F (1991) Simultaneous determination of γ-aminobutyric acid and polyamines by o-phthalaldehyde-β-mercaptoethanol precolumn derivatization and gradient elution liquid chromatography with electrochemical detection. Anal Chim Acta 251(1):101–107

    Article  CAS  Google Scholar 

  • Zare D, Ghazali HM (2017) Assessing the quality of sardine based on biogenic amines using a fuzzy logic model. Food Chem 221:936–943

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank ‘La Sapienza’ University of Rome and Italian MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca). EA thanks Wakunaga Pharmaceutical Co. Ltd. (Japan) for the scholarship given to Yuta Kanamori for supporting his PhD and the Fondazione ‘Enrico ed Enrica Sovena’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Vianello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The present review does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, informed consent is not required.

Additional information

Handling Editor: J. D. Wade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baratella, D., Bonaiuto, E., Magro, M. et al. Endogenous and food-derived polyamines: determination by electrochemical sensing. Amino Acids 50, 1187–1203 (2018). https://doi.org/10.1007/s00726-018-2617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2617-4

Keywords

PubChem CID

Navigation