Skip to main content
Log in

Design and synthesis of oligo-lipidated arginyl peptide (OLAP) dimers with enhanced physicochemical activity, peptide stability and their antimicrobial actions against MRSA infections

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Multi-drug resistant pathogens have been of increasing concern today. There is an urgent need for the discovery of more potent antibiotics. Cationic antimicrobial peptides (CAMPs) are known to be effective antimicrobial agents against resistant pathogens. However, poor activity under physiological conditions is one of the major limitations of CAMPS in clinical applications. In this study, a series of oligo-lipidated arginyl peptide OLAP dimers comprised of a saturated fatty acid chain (with m number of carbon units) and p repeating units of arginyl fatty acid chains (with n number of carbon units) were designed and studied for their antimicrobial activities as well as their physico-chemical property in various physiological conditions, such as in human serum albumin and high salt conditions. Our results showed that OLAP-11 exhibits potent antimicrobial activity against Gram-positive bacteria with improved physico-chemical activity in various physiological conditions. OLAP-11 is also less susceptible to human serum and trypsin degradation. The HPLC–MS analysis showed that the lipid-arginine bond is very stable. SYTOX Green assay and scanning electron microscopy both show that the OLAP-11 killed bacteria via inner membrane disruption. In addition, OLAP-11 is inner membrane targeting, making it difficult for bacteria to develop resistance. Overall, the design of the OLAP dimers provides an alternative approach to improve the physicochemical activity, peptide stability of CAMPs with potent inner membrane disruption and low in vitro toxicity to increase their potential for clinical applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

OLAP:

Oligo-lipidated arginyl peptide

CAMP:

Cationic antimicrobial peptide

HSA:

Human serum albumin

MIC:

Minimum inhibitory concentration

MRSA:

Methicillin-resistant Staphylococcus aureus

DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine

DOPG:

1,2-Dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)

CL:

Cardiolipin

OAK:

Oligo-acyl-lysine OAK

CAMHB:

Cationic-adjusted Mueller–Hinton broth

CFU:

Colony forming units

RBC:

Red blood cells

ANSA:

8-(Phenylamino)-1-naphtha-lenesulfonic acid

MDR:

Multi-drug resistant

AMP:

Antimicrobial peptide

HPLC–MS:

High-performance liquid chromatography-mass spectrometry

OAK:

Oligo-acyl-lysine

CLSI:

Clinical and Laboratory Standards Institute

TSA:

Trypticase soy agar

MHA:

Mueller–Hinton agar

HEPES:

(4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid)

LUV:

Large unilamellar vehicle

References

  • Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36(6):697–705

    Article  PubMed  Google Scholar 

  • Ascenzi P, Gioia M, Fanali G, Coletta M, Fasano M (2012) Pseudo-enzymatic hydrolysis of 4-nitrophenyl acetate by human serum albumin: pH-dependence of rates of individual steps. Biochem Biophys Res Commun 424:451–455

    Article  PubMed  CAS  Google Scholar 

  • Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals (Basel) 6:1543–1575

    Article  CAS  Google Scholar 

  • Balsalobre LC, Dropa M, Matte MH (2014) An overview of antimicrobial resistance and its public health significance. Braz J Microbiol 45:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Bottcher T, Kolodkin-Gal I, Kolter R, Losick R, Clardy J (2013) Synthesis and activity of biomimetic biofilm disruptors. J Am Chem Soc 135:2927–2930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourassa P, Kanakis CD, Tarantilis P, Pollissiou MG, Tajmir-Riahi HA (2010) Resveratrol, genistein, and curcumin bind bovine serum albumin. J Phys Chem B 114:3348–3354

    Article  PubMed  CAS  Google Scholar 

  • Chopra I, Hesse L, O’Neill AJ (2002) Exploiting current understanding of antibiotic action for discovery of new drugs. Symp Ser Soc Appl Microbiol 92:4S–15S

    Article  Google Scholar 

  • Citterio L, Franzyk H, Palarasah Y, Andersen TE, Mateiu RV, Gram L (2016) Improved in vitro evaluation of novel antimicrobials: potential synergy between human plasma and antibacterial peptidomimetics, AMPs and antibiotics against human pathogenic bacteria. Res Microbiol 167:72–82

    Article  PubMed  CAS  Google Scholar 

  • Coates AR, Hu Y (2008) Targeting non-multiplying organisms as a way to develop novel antimicrobials. Trends Pharmacol Sci 29:143–150

    Article  PubMed  CAS  Google Scholar 

  • Dalbey RE, Wang P, Kuhn A (2011) Assembly of bacterial inner membrane proteins. Annu Rev Biochem 80:161–187

    Article  PubMed  CAS  Google Scholar 

  • Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816

    Article  PubMed  CAS  Google Scholar 

  • Dubeau S, Bourassa P, Thomas TJ, Tajmir-Riahi HA (2010) Biogenic and synthetic polyamines bind bovine serum albumin. Biomacromolecules 11:1507–1515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Epand RM, Epand RF (2011) Bacterial membrane lipids in the action of antimicrobial agents. J Pept Sci 17:298–305

    Article  PubMed  CAS  Google Scholar 

  • Friguet B, Szweda LI, Stadtman ER (1994) Susceptibility of glucose-6-phosphate dehydrogenase modified by 4-hydroxy-2-nonenal and metal-catalyzed oxidation to proteolysis by the multicatalytic protease. Arch Biochem Biophys 311:168–173

    Article  PubMed  CAS  Google Scholar 

  • Gentilucci L, De Marco R, Cerisoli L (2010) Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des 16:3185–3203

    Article  PubMed  CAS  Google Scholar 

  • Giuliani A, Rinaldi AC (2011) Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 68:2255–2266

    Article  PubMed  CAS  Google Scholar 

  • Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553–560

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88

    Article  PubMed  CAS  Google Scholar 

  • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • John H, Maronde E, Forssmann WG, Meyer M, Adermann K (2008) N-terminal acetylation protects glucagon-like peptide GLP-1-(7-34)-amide from DPP-IV-mediated degradation retaining cAMP- and insulin-releasing capacity. Eur J Med Res 13:73–78

    PubMed  CAS  Google Scholar 

  • Koh JJ, Lin H, Caroline V, Chew YS, Pang LM, Aung TT, Li J, Lakshminarayanan R, Tan DT, Verma C, Tan AL, Beuerman RW, Liu S (2015) N-lipidated peptide dimers: effective antibacterial agents against Gram-negative pathogens through lipopolysaccharide permeabilization. J Med Chem 58:6533–6548

    Article  PubMed  CAS  Google Scholar 

  • Koh JJ, Lin S, Beuerman RW, Liu S (2017) Recent advances in synthetic lipopeptides as anti-microbial agents: designs and synthetic approaches. Amino Acids 49:1653–1677

    Article  PubMed  CAS  Google Scholar 

  • Kosowska-Shick K, Clark C, Pankuch GA, McGhee P, Dewasse B, Beachel L, Appelbaum PC (2009) Activity of telavancin against staphylococci and enterococci determined by MIC and resistance selection studies. Antimicrob Agents Chemother 53:4217–4224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levin BR, Rozen DE (2006) Non-inherited antibiotic resistance. Nat Rev Microbiol 4:556–562

    Article  PubMed  CAS  Google Scholar 

  • Li J, Liu S, Koh JJ, Zou H, Lakshminarayanan R, Bai Y, Pervushin K, Zhou L, Verma C, Beuerman RW (2015) A novel fragment based strategy for membrane active antimicrobials against MRSA. Biochim Biophys Acta 1848:1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW (2017) Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosci 11:73

    PubMed  PubMed Central  CAS  Google Scholar 

  • McDuff FO, Doucet A, Beauregard M (2004) Low concentration of guanidine hydrochloride induces the formation of an aggregation-prone state in alpha-urease. Biochem Cell Biol 82:305–313

    Article  PubMed  CAS  Google Scholar 

  • Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40

    Article  PubMed  CAS  Google Scholar 

  • Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Peterson LE, Musser JM (2014) Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J Infect 69:216–225

    Article  PubMed  Google Scholar 

  • Radzishevsky IS, Rotem S, Bourdetsky D, Navon-Venezia S, Carmeli Y, Mor A (2007) Improved antimicrobial peptides based on acyl-lysine oligomers. Nat Biotechnol 25:657–659

    Article  PubMed  CAS  Google Scholar 

  • Radzishevsky IS, Kovachi T, Porat Y, Ziserman L, Zaknoon F, Danino D, Mor A (2008) Structure-activity relationships of antibacterial acyl-lysine oligomers. Chem Biol 15:354–362

    Article  PubMed  CAS  Google Scholar 

  • Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–2431

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidtchen A, Pasupuleti M, Malmsten M (2014) Effect of hydrophobic modifications in antimicrobial peptides. Adv Colloid Interface Sci 205:265–274

    Article  PubMed  CAS  Google Scholar 

  • Scott RW, DeGrado WF, Tew GN (2008) De novo designed synthetic mimics of antimicrobial peptides. Curr Opin Biotechnol 19:620–627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen H, Gu Z, Jian K, Qi J (2013) In vitro study on the binding of gemcitabine to bovine serum albumin. J Pharm Biomed Anal 75:86–93

    Article  PubMed  CAS  Google Scholar 

  • Shin SY, Yang ST, Park EJ, Eom SH, Song WK, Kim Y, Hahm KS, Kim JI (2002) Salt resistance and synergistic effect with vancomycin of alpha-helical antimicrobial peptide P18. Biochem Biophys Res Commun 290:558–562

    Article  PubMed  CAS  Google Scholar 

  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, Van der Meijden B, Bernardini F, Lederer A, Dias RL, Misson PE, Henze H, Zumbrunn J, Gombert FO, Obrecht D, Hunziker P, Schauer S, Ziegler U, Kach A, Eberl L, Riedel K, DeMarco SJ, Robinson JA (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327:1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Stromstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M (2009) Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother 53:593–602

    Article  PubMed  CAS  Google Scholar 

  • Verkleij AJ, Zwaal RF, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LL (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta 323:178–193

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Rezk AR, Khara JS, Yeo LY, Ee PL (2016a) Stability and efficacy of synthetic cationic antimicrobial peptides nebulized using high frequency acoustic waves. Biomicrofluidics 10:034115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang B, Pachaiyappan B, Gruber JD, Schmidt MG, Zhang YM, Woster PM (2016b) Antibacterial diamines targeting bacterial membranes. J Med Chem 59:3140–3151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Liu SP, Chen LY, Li J, Ong LB, Guo L, Wohland T, Tang CC, Lakshminarayanan R, Mavinahalli J, Verma C, Beuerman RW (2011) The structural parameters for antimicrobial activity, human epithelial cell cytotoxicity and killing mechanism of synthetic monomer and dimer analogues derived from hBD3 C-terminal region. Amino Acids 40:123–133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Medical Research Council NMRC/CBRG/0080/2015 and NMRC/TCR/R1012. This work is also supported by the Singhealth Foundation SHF/FG691S/2016.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with contributions from all the authors. All the authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Roger W. Beuerman or Shouping Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants

This article does not contain any studies with human participants performed by any of the authors.

Ethical standards

All procedures performed in studies involving animals were in accordance with the ethical standards of the SingHealth IACUC in accordance with the guidelines of the Association for Research in Vision and Ophthalmology (ARVO) at which the studies were conducted.

Additional information

Handling Editor: J. D. Wade.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10690 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, JJ., Lin, S., Sin, W.W.L. et al. Design and synthesis of oligo-lipidated arginyl peptide (OLAP) dimers with enhanced physicochemical activity, peptide stability and their antimicrobial actions against MRSA infections. Amino Acids 50, 1329–1345 (2018). https://doi.org/10.1007/s00726-018-2607-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2607-6

Keywords

Navigation