Skip to main content
Log in

Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The emergence and dissemination of multidrug resistant (MDR) bacteria are major challenges for antimicrobial chemotherapy of bacterial infections. In this critical condition, cationic antimicrobial peptides are ‘novel’ promising candidate antibiotics to overcome the issue. In this study, we investigated the antibacterial mechanism of new melittin-derived peptides (i.e., MDP1 and MDP2) against multidrug resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. MDP1 was designed with deletion of three amino acid residues, i.e., S18, W19, and I20, from the end of second hydrophobic motif of melittin. In the next step, VLTTG in MDP1 sequence was substituted with tryptophan residue. MDP1 and MDP2 had a high-antibacterial activity against MDR and reference strains of S. aureus, E. coli, and P. aeruginosa. DNA and calcein release and flow cytometry assays indicate a time-dependent antibacterial activity on the examined bacteria affected by both MDP1 and MDP2. Finally, SEM analyses highlighted dose- and time-dependent effects of MDP1 and MDP2 on S. aureus and E. coli bacteria by induction of vesicle or pore formation as well as cell lysis. In this study we successfully showed that rational truncation of large hydrophobic motifs can lead to significant reduction in toxicity against human RBCs and improving the antibacterial activity as well. Analyses of data from DNA release, fluorometry, flow cytometry, and morphological assays demonstrated that the MDP1 and MDP2 altered the integrity of both Gram-positive and Gram-negative bacterial membranes and killed the bacteria via membrane damages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MDP:

Melittin derived peptide

MDR:

Multidrug resistant

AMP:

Antimicrobial peptide

AA:

Amino acid

MW:

Molecular weight

References

  • Bardbari AM, Arabestani MR, Karami M, Keramat F, Aghazadeh H, Alikhani MY, Pooshang Bagheri K (2018) Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/s10096-018-3189-7

    Article  PubMed  Google Scholar 

  • Berthold N, Czihal P, Fritsche S, Sauer U, Schiffer G, Knappe D, Alber G, Hoffmann R (2013) Novel apidaecin 1b analogs with superior serum stabilities for treatment of infections by gram-negative pathogens. Antimicrob Agents Chemother 57:402–409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharjya S, Ramamoorthy A (2009) Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. FEBS J 276:6465–6473

    Article  PubMed  CAS  Google Scholar 

  • Bi X, Wang C, Dong W, Zhu W, Shang D (2014) Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer. J Antibiot 67:361–368

    Article  PubMed  CAS  Google Scholar 

  • Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38:217–225

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS (2005) Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung PY, Khanum R (2017) Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect 50:405–410

    Article  PubMed  CAS  Google Scholar 

  • Crofts TS, Gasparrini AJ, Dantas G (2017) Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 15:422–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dennison SR, Wallace J, Harris F, Phoenix DA (2005) Amphiphilic α-helical antimicrobial peptides and their structure/function relationships. Protein Pept Lett 12:31–39

    Article  PubMed  CAS  Google Scholar 

  • Farkas A, Maróti G, Kereszt A, Kondorosi É (2017) Comparative analysis of the bacterial membrane disruption effect of two natural plant antimicrobial peptides. Front Microbiol 8:51

    PubMed  PubMed Central  Google Scholar 

  • Felício MR, Silva ON, Gonçalves S, Santos NC, Franco OL (2017) Peptides with dual antimicrobial and anticancer activities. Front Chem 5:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Findlay B, Zhanel GG, Schweizer F (2010) Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother 54:4049–4058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discovery 11:37–51

    Article  CAS  Google Scholar 

  • Gao Y et al (2017) Targeted modification of a novel amphibian antimicrobial peptide from phyllomedusa tarsius to enhance its activity against MRSA and Microbial Biofilm. Front Microbiolgy 8:628

    Google Scholar 

  • Gilkeson GS, Grudier JP, Karounos DG, Pisetsky DS (1989) Induction of anti-double stranded DNA antibodies in normal mice by immunization with bacterial DNA. J Immunol 142:1482–1486

    PubMed  CAS  Google Scholar 

  • Global antimicrobial resistance surveillance system (GLASS) report: early implementation. 2016-2017. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO

  • Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti-Infective Ther 5:951–959

    Article  CAS  Google Scholar 

  • Hancock R, Patrzykat A (2002) Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2:79–83

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Meng EC, Morris JH, Pettersen EF, Ferrin TE (2014) Enhancing UCSF Chimera through web services. Nucleic Acids Res 42:478–484

    Article  CAS  Google Scholar 

  • Jorge P, Lourenço A, Pereira MO (2012) New trends in peptide-based anti-biofilm strategies: a review of recent achievements and bioinformatic approaches. Biofouling 28:1033–1061

    Article  PubMed  CAS  Google Scholar 

  • Knappe D, Henklein P, Hoffmann R, Hilpert K (2010) Easy strategy to protect antimicrobial peptides from fast degradation in serum. Antimicrob Agents Chemother 54:4003–4005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koczulla AR, Bals R (2003) Antimicrobial peptides. Drugs 63:389–406

    Article  PubMed  CAS  Google Scholar 

  • Lyu Y, Yang Y, Lyu X, Dong N, Shan A (2016) Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci Rep 6:27258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masuda R, Dazai Y, Mima T, Koide T (2017) Structure–activity relationships and action mechanisms of collagen-like antimicrobial peptides. Peptide Science 108

  • Memar B, Jamili S, Shahbazzadeh D, Bagheri KP (2016) The first report on coagulation and phospholipase A2 activities of Persian Gulf lionfish, Pterois russelli, an Iranian venomous fish. Toxicon 113:25–31

    Article  PubMed  CAS  Google Scholar 

  • Narayana JL, Chen J-Y (2015) Antimicrobial peptides: possible anti-infective agents. Peptides 72:88–94

    Article  CAS  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    Article  PubMed  CAS  Google Scholar 

  • Patel J, Cockerill F, Bradford P, Eliopoulos G, Hindler J, Jenkins S, et al (2016) Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically Approved standard M07-A10, Wayne, PA

  • Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry 31:12416–12423

    Article  PubMed  CAS  Google Scholar 

  • Pyun EH, Pisetsky DS, Gilkeson GS (1993) The fine specificity of monoclonal anti-DNA antibodies induced in normal mice by immunization with bacterial DNA. J Autoimmun 6:11–26

    Article  PubMed  CAS  Google Scholar 

  • Sani MA, Separovic F (2016) How Membrane-Active Peptides Get into Lipid Membranes. Acc Chem Res 49:1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Shagaghi N, Bhave M, Palombo EA, Clayton AH (2017) Revealing the sequence of interactions of PuroA peptide with Candida albicans cells by live-cell imaging. Sci Rep 7:435–442

    Article  Google Scholar 

  • Shams Khozani R, Shahbazzadeh D, Harzandi N, Feizabadi MM, Bagheri KP (2018) Kinetics study of antimicrobial peptide, melittin, in simultaneous biofilm degradation and eradication of potent biofilm producing MDR pseudomonas aeruginosa isolates. Int J Pept Res Ther. https://doi.org/10.1007/s10989-018-9675-z

    Article  Google Scholar 

  • Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K (2015) Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS ONE 10:e0121313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang K, Yan J, Chen R, Dang W, Zhang B, Zhang W, Song J, Wang R (2012) Membrane-active action mode of polybia-CP, a novel antimicrobial peptide isolated from the venom of Polybia paulista. Antimicrob Agents Chemother 56:3318–3323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mularski A, Wilksch JJ, Hanssen E, Strugnell RA (1858) Separovic F (2016) Atomic force microscopy of bacteria reveals the mechanobiology of pore forming peptide action. Biochim Biophys Acta 6:1091–1098

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial and facility support provided by the Shahid Beheshti University of medical sciences, Pasteur Institute of Iran, and INSERM UMRs 1097, Aix-Marseille Universite.

Author information

Authors and Affiliations

Authors

Contributions

RA designed the peptides, performed all experiments and analyses, and also wrote the manuscript. MHV served as supervisor and revised the manuscript. AH served as advisor. HA contributed to flow cytometry assays. JMS produced the designed peptides and contributed to the revision of manuscript. KPB supervised the project and contributed to the peptide design, experimental design, analyses, writing, revision, and redaction of the manuscript. The idea of designing melittin-derived peptides based on the reduction of hydrophobicity belongs to the corresponding author, KPB.

Corresponding authors

Correspondence to Mojdeh Hakemi Vala, Jean-Marc Sabatier or Kamran Pooshang Bagheri.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: N. Sewald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, R., Hakemi Vala, M., Hashemi, A. et al. Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria. Amino Acids 50, 1231–1243 (2018). https://doi.org/10.1007/s00726-018-2596-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2596-5

Keywords

Navigation