Skip to main content
Log in

Atomic displacement parameters in structural biology

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Atomic displacement parameters (ADPs, also known as B-factors), which depend on structural heterogeneity, provide a wide spectrum of information on protein structure and dynamics and find several applications, from protein conformational disorder prediction to protein thermostabilization, and from protein folding kinetics prediction to protein binding sites prediction. A crucial aspect is the standardization of the ADPs when comparisons between two or more protein crystal structures are made, since ADPs are differently affected by several factors, from crystallographic resolution to refinement protocols. A potential limitation to ADP analysis is the modern tendency to let ADPs to inflate up to extremely large values that have little physico-chemical meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alber T, Petsko GA, Tsernoglou D (1976) Crystal structure of elastase-substrate complex at—55 degrees C. Nature 263:297–300

    Article  PubMed  CAS  Google Scholar 

  • Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 3:173–181

    Article  Google Scholar 

  • Bahar I, Rana Atilgan A, Demirel MC, Erman B (1998) Vibrational Dynamics of folded proteins: significance of slow and fast motions in relation to function and stability. Phys Rev Lett 80:2733–2736

    Article  CAS  Google Scholar 

  • ben-Avraham D, Tirion MM (1998) Normal modes analyses of macromolecules. Physica A. 249:415–423

    Article  Google Scholar 

  • Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins. 71:261–277

    Article  PubMed  CAS  Google Scholar 

  • Bhaskaran R, Ponnuswamy PK (1988) Positional flexibilities of amino acid residues in globular proteins. Chem Biol Drug Des 32:241–255

    CAS  Google Scholar 

  • Bolognesi M, Rosano C, Losso R, Borassi A, Rizzi M, Wittenberg JB, Boffi A, Ascenzi P (1999) Cyanide binding to Lucina pectinata hemoglobin I and to sperm whale myoglobin: an X-ray crystallographic study. Biophys J 77:1093–1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bury CS, Carmichael I, Garman EF (2017) OH cleavage from tyrosine: debunking a myth. J Synchrotron Radiat 24:7–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carugo O, Argos P (1997) Protein-protein crystal-packing contacts. Protein Sci 6:2261–2263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carugo O, Argos P (1999) Reliability of atomic displacement parameters in protein crystal structures. Acta Crystallogr D Biol Crystallogr 55(Pt 2):473–478

    Article  PubMed  CAS  Google Scholar 

  • Carugo O, Djinovic-Carugo K (2005) When X-rays modify the protein structure: radiation damage at work. Trends Biochem Sci 30:213–219

    Article  PubMed  CAS  Google Scholar 

  • Cruickshank DWJ (1999) Remarks about protein structure precision. Acta Cryst. D55:583–593

    CAS  Google Scholar 

  • Dauter Z, Lamzin VS, Wilson KS (1997) The benefits of atomic resolution. Curr Opin Struct Biol 7:681–688

    Article  PubMed  CAS  Google Scholar 

  • Declercq JP, Evrard C, Lamzin V, Parello J (1999) Crystal structure of the EF-hand parvalbumin at atomic resolution (0.91 A) and at low temperature (100 K). Evidence for conformational multistates within the hydrophobic core. Protein Sci 8:2194–2204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Djinovic-Carugo K, Carugo O (2015) Missing strings of residues in protein crystal structures. Intrinsically Disord Proteins 3(1):1–7

    Article  Google Scholar 

  • Duarte J, Srebniak A, Scharer M, Capitani G (2012) Protein interface classification by evolutionary analysis. BMC Bioinform 13:334

    Article  Google Scholar 

  • Dunitz JD, Maverick EF, Trueblood KN (1988a) Atomic motions in molecular crystals from diffraction measurements. Angew Chem Int Ed Eng 27:880–895

    Article  Google Scholar 

  • Dunitz JD, Shomaker V, Trueblood KN (1988b) Interpretation of atomic displacement parameters from diffraction studies of crystals. J Phys Chem 92:856–867

    Article  CAS  Google Scholar 

  • Elgavish S, Shaanan B (1998) Structures of the Erythrina corallodendron lectin and of its complexes with mono- and disaccharides. J Mol Biol 277:817–932

    Article  Google Scholar 

  • Erman B (2016) Universal features of fluctuations in globular proteins. Proteins. 84:721–725

    Article  PubMed  CAS  Google Scholar 

  • Fenwick RB, van den Bedem H, Fraser JS, Wright PE (2014) Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR. Proc Natl Acad Sci USA 111:E445–E454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraser JS, van den Bedem H, Samelson AJ, Lang T, Holton JM, Echols N, Albera T (2011a) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci USA 108:16247–16252

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser JS, van den Bedemb HE, Samelson AJ, Lang PT, Holton JM, Echols N, Alber T (2011b) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci USA 108:16247–16252

    Article  PubMed  PubMed Central  Google Scholar 

  • Frauenfelder H, Petsko GA (1980) Structural dynamics of liganded myoglobin. Biophys J 32:465–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280:558–563

    Article  PubMed  CAS  Google Scholar 

  • Frauenfelder H, Hartmann H, Karplus M, Kuntz IDJ, Kuriyan J, Parak F, Petsko GA, Ringe D, Tilton RFJ, Connolly ML et al (1987) Thermal expansion of a protein. Biochemistry 26:254–261

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Zhang T, Zhang H, Shen S, Ruan J, Kurgan L (2010) Accurate prediction of protein folding rates from sequence and sequence-derived residue flexibility and solvent accessibility. Proteins. 78:2114–2130

    PubMed  CAS  Google Scholar 

  • Garman E (2003) ‘Cool’ crystals: macromolecular cryocrystallography and radiation damage. Curr Opin Struct Biol. 13:545–551

    Article  PubMed  CAS  Google Scholar 

  • Garman EF, Owen RL (2006) Cryocooling and radiation damage in macromolecular crystallography. Acta Crystallogr. D62:32–47

    CAS  Google Scholar 

  • Giacovazzo C, Monaco HL, Artioli G, Viterbo D, Ferraris G, Gilli G, Zanotti G, Catti M (2002) Fundamentals of crystallography. Oxford University Press, Oxford

    Google Scholar 

  • Gianese G, Bossa F, Pascarella S (2002) Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins 47:236–249

    Article  PubMed  CAS  Google Scholar 

  • Gohlke H, Kuhn LA, Case DA (2004) Change in protein flexibility upon complex formation: analysis of Ras-Raf using molecular dynamics and a molecular framework approach. Proteins 56:322–327

    Article  PubMed  CAS  Google Scholar 

  • Gourinath S, Himmel DM, Brown JH, Reshetnikova L, Szent-Györgyi AG, Cohen C (2003) Crystal structure of scallop Myosin s1 in the pre-power stroke state to 2.6 a resolution: flexibility and function in the head. Structure. 11:1621–1627

    Article  PubMed  CAS  Google Scholar 

  • Haliloglu T, Bahar I (1999) Structure-based analysis of protein dynamics: comparison of theoretical results for hen lysozyme with X-ray diffraction and NMR relaxation data. Proteins. 37:654–667

    Article  PubMed  CAS  Google Scholar 

  • Halle B (2002) Flexibility and packing in proteins. Proc Natl Acad Sci USA 99:1274–1279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halle B (2004) Biomolecular cryocrystallography: structural changes during flash-cooling. Proc Natl Acad Sci USA 101:4793–4798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartmann H, Parak F, Steigemann W, Petsko GA, Ponzi DR, Frauenfelder H (1982) Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K. Proc Natl Acad Sci USA 79:4967–4971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Higo J, Umeyama H (1997) Protein dynamics determined by backbone conformation and atom packing. Prot Eng. 10:373–380

    Article  CAS  Google Scholar 

  • Hinsen K, Kneller G (1999) A simplified force field for describing vibrational protein dynamics over the whole frequency range. J Chem Phys. 111:10766–10769

    Article  CAS  Google Scholar 

  • Holton JM (2009) A beginner’s guide to radiation damage. J Synchrotron Radiat 16:133–142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang YJ, Acton TB, Montelione GT (2014) DisMeta: a meta server for construct design and optimization. Methods Mol Biol 1091:3–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang J, Xie DF, Feng Y (2017) Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations. Biochem Biophys Res Commun 483:397–402

    Article  PubMed  CAS  Google Scholar 

  • Ishida T, Kinoshita K (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24:1344–1348

    Article  PubMed  CAS  Google Scholar 

  • Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF (2001) Protein flexibility predictions using graph theory. Proteins. 44:150–165

    Article  PubMed  CAS  Google Scholar 

  • Janin J, Rodier F (1995) Protein-protein interaction at crystal contacts. Proteins. 23:580–587

    Article  PubMed  CAS  Google Scholar 

  • Jiao X, Ranganathan S (2017) Prediction of interface residue based on the features of residue interaction network. J Theor Biol 432:49–54

    Article  PubMed  CAS  Google Scholar 

  • Joosten RP, Long F, Murshudov GN, Perrakis A (2014) The PDB_REDO server for macromolecular structure model optimization. IUCrJ. 1:213–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juers DH, Matthews BW (2001) Reversible lattice repacking illustrates the temperature dependence of macromolecular interactions. J Mol Biol 311:851–862

    Article  PubMed  CAS  Google Scholar 

  • Karplus PA, Schulz GE (1985) Preiction of chain flexibility in proteins. Natuwissenschaften. 72:212–213

    Article  CAS  Google Scholar 

  • Kozlowski LP, Bujnicki JM (2012) MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinform 13:111

    Article  Google Scholar 

  • Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  PubMed  CAS  Google Scholar 

  • Kundu S, Melton JS, Sorensen DC, Phillips GN Jr (2002) Dynamics of proteins in crystals: comparison of experiment with simple models. Biophys J 83:723–732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuzmanic A, Pannu NS, Zagrovic B (2014) X-ray refinement significantly underestimates the level of microscopic heterogeneity in biomolecular crystals. Nat Commun 5:3220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Läuger P (1985) Ionic channels with conformational substates. Biophys J 47:581–590

    Article  PubMed  PubMed Central  Google Scholar 

  • Levitt M, Sander C, Stern PS (1985) Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol 181:423–447

    Article  PubMed  CAS  Google Scholar 

  • Lieutaud P, Canard B, Longhi S (2008) MeDor: a metaserver for predicting protein disorder. BMC Genomics 9(Suppl 2):S25

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieutaud P, Ferron F, Longhi S (2016) Predicting conformational disorder. Methods Mol Biol 1415:265–299

    Article  PubMed  CAS  Google Scholar 

  • Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure (Camb). 11(11):1453–1459

    Article  CAS  Google Scholar 

  • Liu Q, Kwoh CK, Li J (2010) Identifying protein-protein interaction sites in transient complexes with temperature factor, sequence profile and accessible surface area. Amino Acids 38:263–270

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kwoh CK, Li J (2013) Binding affinity prediction for protein-ligand complexes based on β contacts and B factor. J Chem Inf Model 53:3076–3085

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Li Z, Li J (2014) Use B-factor related features for accurate classification between protein binding interfaces and crystal packing contacts. BMC Bioinform 15:S3

    Google Scholar 

  • MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 102:3586–3616

    Article  PubMed  CAS  Google Scholar 

  • Maguid S, Fernández-Alberti S, Parisi G, Echave J (2006) Evolutionary conservation of protein backbone flexibility. J Mol Evol 63:448–457

    Article  PubMed  CAS  Google Scholar 

  • Necci M, Piovesan D, Dosztányi Z, Tosatto SCE (2017) MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33:1402–1404

    PubMed  Google Scholar 

  • Nguyen DD, Xia K, Wei GW (2016) Generalized flexibility-rigidity index. J Chem Phys. 144:234106

    Article  PubMed  CAS  Google Scholar 

  • Pan XY, Shen HB (2009) Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection. Protein Pept Lett 16:1447–1454

    Article  PubMed  CAS  Google Scholar 

  • Pang YP (2016) Use of multiple picosecond high-mass molecular dynamics simulations to predict crystallographic B-factors of folded globular proteins. Heliyon. 2:e00161

    Article  PubMed  PubMed Central  Google Scholar 

  • Parthasarathy S, Murthy MRN (1997) Analysis of temperature factor distribution in high-resolution protein structures. Protein Sci 6:2561–2567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parthasarathy S, Murthy MRN (1999) On the correlation between the main-chain and side-chain atomic displacement parameters (B values) in high-resolution protein structures. Acta Crystallogr. D55:173–180

    CAS  Google Scholar 

  • Parthasarathy S, Murthy MR (2000) Protein thermal stability: insights from atomic displacement parameters (B values). Protein Eng 13:9–13

    Article  PubMed  CAS  Google Scholar 

  • Potenza E, Domenico TD, Walsh I, Tosatto SC (2015) MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res. 43:D315–D320

    Article  PubMed  CAS  Google Scholar 

  • Ragone R, Facchiano F, Facchiano A, Facchiano AM, Colonna G (1989) Plexibility plot of proteins. Prot Eng. 2:497–504

    Article  CAS  Google Scholar 

  • Rasmussen BF, Stock AM, Ringe D, Petsko GA (1992) Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 357:423–424

    Article  PubMed  CAS  Google Scholar 

  • Rathi PC, Fulton A, Jaeger K-E, Gohlke H (2016) Application oft he rigidity theory tot he thermostabilization of Lipase A from Bacillus subtilis. PLoS Comput Biol 12:e1004754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reetz MT, Carballeira JD, Vogel A (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed Eng. 45:7745–7751

    Article  CAS  Google Scholar 

  • Ringe D, Petsko GA (1986) Study of protein dynamics by X-ray diffraction. Methods Enzymol 131:389–433

    Article  PubMed  CAS  Google Scholar 

  • Russi S, González A, Kenner LR, Keedy DA, Fraser JS, van den Bedem H (2017) Conformational variation of proteins at room temperature is not dominated by radiation damage. J Synchrotron Radiat 24:73–82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt A, Lamzin VS (2010) Internal motion in protein crystal structures. Protein Sci 19:944–953

    PubMed  PubMed Central  CAS  Google Scholar 

  • Siglioccolo A, Gerace R, Pascarella S (2010) “Cold spots” in protein cold adaptation: insights from normalized atomic displacement parameters (B-factors). Biophys Chem 153:104–114

    Article  PubMed  CAS  Google Scholar 

  • Singh TP, Bode W, Huber R (1980) Low-temperature protein crystallography. Effect on flexibility, temperature factor, mosaic spread, extinction and diffuse scattering in two examples: bovine trypsinogen and Fc fragment. Acta Cryst. B36:621–627

    Article  CAS  Google Scholar 

  • Smith JL, Hendrickson WA, Honzatko RB, Sheriff S (1986) tructural heterogeneity in protein crystals. Biochemistry 25:5018–5027

    Article  PubMed  CAS  Google Scholar 

  • Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G (2003) Improved amino acid flexibility parameters. Protein Sci 12:1060–1072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stein DL (1985) A model of protein conformational substates. Proc Natl Acad Sci USA 82:3670–3672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tilton RFJ, Dewan JC, Petsko GA (1992) Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry 31:2469–2481

    Article  PubMed  CAS  Google Scholar 

  • Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter. Atomic analysis. Phys Rev Lett. 77:1905–1908

    Article  PubMed  CAS  Google Scholar 

  • Trueblood KN, Bürgi H-B, Burzlaff H, Dunitz JC, Gramaccioli CM, Schulz HH, Shmueli U, Abrahams SC (1996) Atomic displacement parameter nomenclature. Report of a subcommittee on atomic displacement parameter nomenclature. Acta Cryst. A52:770–781

    Article  CAS  Google Scholar 

  • Vihinen M, Torkkila E, Riikonen P (1994) Accuracy of protein flexibility predictions. Proteins. 19:141–149

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Lovelace LL, Sun S, Dawson JH, Lebioda L (2014) Structures of K42N and K42Y sperm whale myoglobins point to an inhibitory role of distal water in peroxidase activity. Acta Cryst. D70:2833–2839

    Google Scholar 

  • Warkentin M, Thorne RE (2009) Slow cooling of protein crystals. J Appl Cryst. 42:944–952

    Article  CAS  Google Scholar 

  • Warkentin M, Thorne RE (2010) Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements. Acta Cryst. D66:1092–1100

    Google Scholar 

  • Watson HC (1969) The stereochemistry of the protein myoglobin. Prog Stereochem 4(299–312):5

    Google Scholar 

  • Weiss MS (2007) On the interrelationship between atomic displacement parameters (ADPs) and coordinates in protein structures. Acta Crystallogr. D63:1235–1242

    Google Scholar 

  • Woldeyes RA, Sivak DA, Fraser JS (2014) E pluribus unum, no more: from one crystal, many conformations. Curr Opin Struct Biol 28:56–62

    Article  PubMed  CAS  Google Scholar 

  • Xia K, Opron K, Wei GW (2015) Multiscale Gaussian network model (mGNM) and multiscale anisotropic network model (mANM). J Chem Phys. 143:204106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Wang Y, Zhang Y (2016) ResQ: an Approach to unified estimation of B-factor and residue-specific error in protein structure prediction. J Mol Biol 428:693–701

    Article  PubMed  CAS  Google Scholar 

  • Yuan Z, Bailey TL, Teasdale RD (2005) Prediction of protein B-factor profiles. Proteins. 58:905–912

    Article  PubMed  CAS  Google Scholar 

  • Zanotti G (2002) Protein Crystallography. In: Giacovazzo C (ed) Fundamental of crystallography. Oxfor University Press, Oxford, pp 667–757

    Google Scholar 

  • Zhang XF, Yang GY, Zhang Y, Xie Y, Withers SG, Feng Y (2016) A general and efficient strategy for generating the stable enzymes. Sci Rep. 6:33797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Kristina Djinović (University of Vienna) and the members of the COST BM1405 network on non-globular proteins for interesting discussions. The in-depth work of a reviewer is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliviero Carugo.

Ethics declarations

Conflict of interest

The author reports no declarations of interest.

Research involving human participants and/or animals

None.

Informed consent

None.

Additional information

Handling Editor: J. D. Wade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carugo, O. Atomic displacement parameters in structural biology. Amino Acids 50, 775–786 (2018). https://doi.org/10.1007/s00726-018-2574-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2574-y

Keywords

Navigation