Skip to main content
Log in

The protein–protein interaction network and clinical significance of heat-shock proteins in esophageal squamous cell carcinoma

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Heat-shock proteins (HSPs), one of the evolutionarily conserved protein families, are widely found in various organisms, and play important physiological functions. Nevertheless, HSPs have not been systematically analyzed in esophageal squamous cell carcinoma (ESCC). In this study, we applied the protein–protein interaction (PPI) network methodology to explore the characteristics of HSPs, and integrate their expression in ESCC. First, differentially expressed HSPs in ESCC were identified from our previous RNA-seq data. By constructing a specific PPI network, we found differentially expressed HSPs interacted with hundreds of neighboring proteins. Subcellular localization analyses demonstrated that HSPs and their interacting proteins distributed in multiple layers, from membrane to nucleus. Functional enrichment annotation analyses revealed known and potential functions for HSPs. KEGG pathway analyses identified four significant enrichment pathways. Moreover, three HSPs (DNAJC5B, HSPA1B, and HSPH1) could serve as promising targets for prognostic prediction in ESCC, suggesting these HSPs might play a significant role in the development of ESCC. These multiple bioinformatics analyses have provided a comprehensive view of the roles of heat-shock proteins in esophageal squamous cell carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Assenov Y, Ramírez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284

    Article  CAS  PubMed  Google Scholar 

  • Bablani Popli D, Sircar K, Chowdhry A, Rani V (2015) Role of heat shock proteins in oral squamous cell carcinoma: a systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159:366–371

    PubMed  Google Scholar 

  • Barsky A, Gardy JL, Hancock RE, Munzner T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23:1040–1042

    Article  CAS  PubMed  Google Scholar 

  • Batulan Z, Pulakazhi Venu VK, Li Y, Koumbadinga G, Alvarez-Olmedo DG, Shi C, O’Brien ER (2016) Extracellular release and signaling by heat shock protein 27: role in modifying vascular inflammation. Front Immunol 7:285

    Article  PubMed  PubMed Central  Google Scholar 

  • Bond U, Schlesinger MJ (1987) Heat shock proteins and development. Adv Genet 24:1–29

    CAS  PubMed  Google Scholar 

  • Braga ACS, Carneiro BM, Batista MN, Akinaga MM, Bittar C, Rahal P (2017) Heat shock proteins HSPB8 and DNAJC5B have HCV antiviral activity. PLoS One 12:e0188467

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown MA, Foreman K, Harriss J, Das C, Zhu L, Edwards M, Shaaban S, Tucker H (2015) C-terminal domain of SMYD3 serves as a unique HSP90-regulated motif in oncogenesis. Oncotarget 6:4005–4019

    PubMed  PubMed Central  Google Scholar 

  • Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10:7252–7259

    Article  CAS  PubMed  Google Scholar 

  • Carlson MR, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF (2006) Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genom 7:40

    Article  Google Scholar 

  • Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O’Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41(Database issue):D816–D823

    CAS  PubMed  Google Scholar 

  • Chatterjee S, Burns TF (2017) Targeting heat shock proteins in Cancer: a promising therapeutic approach. Int J Mol Sci 18(9):1978–2017

    Article  PubMed Central  Google Scholar 

  • Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66:115–132

    Article  PubMed  Google Scholar 

  • Cooper LA, Demicco EG, Saltz JH, Powell RT, Rao A, Lazar AJ (2018) PanCancer insights from The Cancer Genome Atlas: the pathologist's perspective. J Pathol 244:512–524. https://doi.org/10.1002/path.5028

    Article  CAS  PubMed  Google Scholar 

  • Dallago C, Goldberg T, Andrade-Navarro MA, Alanis-Lobato G, Rost B (2017) CellMap visualizes protein-protein interactions and subcellular localization. F1000Research 6:1824

    Article  PubMed  Google Scholar 

  • De Maio A, Vazquez D (2013) Extracellular heat shock proteins: a new location, a new function. Shock 40:239–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Du ZP, Wu BL, Wu X, Lin XH, Qiu XY, Zhan XF, Wang SH, Shen JH, Zheng CP, Wu ZY, Xu LY, Wang D, Li EM (2015) A systematic analysis of human lipocalin family and its expression in esophageal carcinoma. Sci Rep 5:12010

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein function in the post-genomic era. Nature 405:823–826

    Article  CAS  PubMed  Google Scholar 

  • Feder ME, Hofmann CE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • García R, Merino D, Gómez JM, Nistal JF, Hurlé MA, Cortajarena AL, Villar AV (2016) Extracellular heat shock protein 90 binding to TGFβ receptor I participates in TGFβ-mediated collagen production in myocardial fibroblasts. Cell Signal 28:1563–1579

    Article  PubMed  Google Scholar 

  • Goel R, Muthusamy B, Pandey A, Prasad TS (2011) Human protein reference database and human proteinpedia as discovery resources for molecular biotechnology. Mol Biotechnol 48:87–95

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Weng D, Eguchi T, Murshid A, Sherman MY, Song B, Calderwood SK (2015) Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis. Oncogene 34:5460–5471

    Article  CAS  PubMed  Google Scholar 

  • Greene MK, Maskos K, Landry SJ (1998) Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc Natl Acad Sci USA 95:6108–6113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung MC, Link W (2011) Protein localization in disease and therapy. Cell Sci 124(Pt 20):3381–3392

    Article  CAS  Google Scholar 

  • Jagadish N, Parashar D, Gupta N, Agarwal S, Suri V, Kumar R, Suri V, Sadasukhi TC, Gupta A, Ansari AS, Lohiya NK, Suri A (2016) Heat shock protein 70-2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth. BMC Cancer 16:561

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaigorodova EV, Bogatyuk MV (2014) Heat shock proteins as prognostic markers of cancer. Curr Cancer Drug Targets 14:713–726

    Article  CAS  PubMed  Google Scholar 

  • Langer R, Ott K, Specht K, Becker K, Lordick F, Burian M, Herrmann K, Schrattenholz A, Cahill MA, Schwaiger M, Hofler H, Wester HJ (2008) Protein expression profiling in esophageal adenocarcinoma patients indicates association of heat shock protein 27 expression and chemotherapy response. Clin Cancer Res 14:8279–8288

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 21:1109–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Wu X, Wang J, Pan Y (2012) Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinform 13:109

    Article  CAS  Google Scholar 

  • Li CQ, Huang GW, Wu ZY, Xu YJ, Li XC, Xue YJ, Zhu Y, Zhao JM, Li M, Zhang J, Wu JY, Lei F, Wang QY, Li S, Zheng CP, Ai B, Tang ZD, Feng CC, Liao LD, Wang SH, Shen JH, Liu YJ, Bai XF, He JZ, Cao HH, Wu BL, Wang MR, Lin DC, Koeffler HP, Wang LD, Li X, Li EM, Xu LY (2017) Integrative analyses of transcriptome sequencing identify novel functional lncRNAs in esophageal squamous cell carcinoma. Oncogenesis 6:e297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lianos GD, Alexiou GA, Mangano A, Mangano A, Rausei S, Boni L, Dionigi G, Roukos DH (2015) The role of heat shock proteins in cancer. Cancer Lett 360:114–118

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang M, Ying S, Zhang C, Lin R, Zheng J, Zhang G, Tian D, Guo Y, Du C, Chen Y, Chen S, Su X, Ji J, Deng W, Li X, Qiu S, Yan R, Xu Z, Wang Y, Guo Y, Cui J, Zhuang S, Yu H, Zheng Q, Marom M, Sheng S, Zhang G, Hu S, Li R, Su M (2017) Genetic alterations in esophageal tissues from squamous dysplasia to carcinoma. Gastroenterology 153:166–177

    Article  CAS  PubMed  Google Scholar 

  • Mardan-Nik M, Pasdar A, Jamialahmadi K, Biabangard-Zak A, Mirhafez SR, Ghalandari M, Tajfard M, Mohebati M, Esmaily H, Ferns GA, Ghayour-Mobarhan M (2014) Association of heat shock protein70-2 (HSP70-2) gene polymorphism with coronary artery disease in an Iranian population. Gene 550:180–184

    Article  CAS  PubMed  Google Scholar 

  • Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913

    Article  CAS  PubMed  Google Scholar 

  • Meares GP, Zmijewska AA, Jope RS (2008) HSP105 interacts with GRP78 and GSK3 and promotes ER stress-induced caspase-3 activation. Cell Signal 20:347–358

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Hunt C, Yaglom JA, Gabai VL, Sherman MY (2011) Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis. Oncogene 30:2836–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5:e13984

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazaki T, Kato H, Faried A, Sohda M, Nakajima M, Fukai Y, Masuda N, Manda R, Fukuchi M, Ojima H, Tsukada K, Kuwano H (2005) Predictors of response to chemo-radiotherapy and radiotherapy for esophageal squamous cell carcinoma. Anticancer Res 25:2749–2756

    PubMed  Google Scholar 

  • Motulsky HJ (2007) Prism 5 statistics guide. GraphPad Software 31:39–42

    Google Scholar 

  • Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M (2005) Whole-proteome prediction of protein function via graph theoretic analysis of interaction maps. Bioinformatics 21:302–310

    Article  Google Scholar 

  • Nakajima M, Kato H, Miyazaki T, Fukuchi M, Masuda N, Fukai Y, Sohda M, Ahmad F, Kuwano H (2009) Tumor immune systems in esophageal cancer with special reference to heat shock protein 70 and humoral immunity. Anticancer Res 29:1595–1606

    PubMed  Google Scholar 

  • Nakanishi K, Kamiguchi K, Torigoe T, Nabeta C, Hirohashi Y, Asanuma H, Tobioka H, Koge N, Harada O, Tamura Y, Nagano H, Yano S, Chiba S, Matsumoto H, Sato N (2004) Localization and function in endoplasmic reticulum stress tolerance of ERdj3, a new member of Hsp40 family protein. Cell Stress Chaperon 9:253–264

    Article  CAS  Google Scholar 

  • Noguchi T, Takeno S, Shibata T, Uchida Y, Yokoyama S, Müller W (2002) Expression of heat shock protein 70 in grossly resected esophageal squamous cell carcinoma. Ann Thorac Surg 74:222–226

    Article  PubMed  Google Scholar 

  • Ohashi S, Miyamoto S, Kikuchi O, Goto T, Amanuma Y, Muto M (2015) Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology 149:1700–1715

    Article  PubMed  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Cell Mol Life Sci 18:571–573

    Article  CAS  Google Scholar 

  • Santos TG, Martins VR, Hajj GNM (2017) Unconventional secretion of heat shock proteins in cancer. Int J Mol Sci 18:946

    Article  PubMed Central  Google Scholar 

  • Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81:15–27

    Article  CAS  PubMed  Google Scholar 

  • Sengupta U, Ukil S, Dimitrova N, Agrawal S (2009) Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications. PLoS One 4:e8100

    Article  PubMed  PubMed Central  Google Scholar 

  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed  Google Scholar 

  • Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

    Article  CAS  PubMed  Google Scholar 

  • Szondy K, Rusai K, Szabó AJ, Nagy A, Gal K, Fekete A, Kovats Z, Losonczy G, Lukacsovits J, Müller V (2012) Tumor cell expression of heat shock protein (HSP) 72 is influenced by HSP72 [HSPA1B A(1267)G] polymorphism and predicts survival in small cell lung cancer (SCLC) patients. Cancer Investig 30:317–322

    Article  CAS  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2012) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  Google Scholar 

  • Tseng GC, Ghosh D, Feingold E (2012) Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res 40:3785–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinayagam A, Gibso TE, Lee HJ, Yilmazel B, Roesel C, Hu Y, Kwon Y, Sharma A, Liu YY, Perrimon N, Barabási AL (2016) Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. Proc Natl Acad Sci USA 113:4976–4981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong HR (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 12:323–325

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Vallenius T, Ovaska K, Westermarck J, Mäkelä TP, Hautaniemi S (2009) Integrated network analysis platform for protein–protein interactions. Nat Methods 6:75–77

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Li C, Du Z, Yao Q, Wu J, Feng L, Zhang P, Li S, Xu L, Li E (2014) Network based analyses of gene expression profile of LCN2 overexpression in esophageal squamous cell carcinoma. Sci Rep 4:5403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S (2017) Heat shock proteins and cancer. Trends Pharmacol Sci 38:226–256

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhuang L, Szatmary P, Wen L, Sun H, Lu Y, Xu Q, Chen X (2015) Upregulation of heat shock proteins (HSPA12A, HSP90B1, HSPA4, HSPA5 and HSPA6) in tumour tissues is associated with poor outcomes from HBV-related early-stage hepatocellular carcinoma. Int J Med Sci 12:256–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu N, Kakunda M, Pham V, Lill JR, Du P, Wongchenko M, Yan Y, Firestein R, Huang X (2015a) HSP105 recruits protein phosphatase 2A to dephosphorylate β-catenin. Mol Cell Biol 35:1390–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu VZ, Wong VC, Dai W, Ko JM, Lam AK, Chan KW, Samant RS, Lung HL, Shuen WH, Law S, Chan YP, Lee NP, Tong DK, Law TT, Lee VH, Lung ML (2015b) Nuclear localization of DNAJB6 is associated with survival of patients with esophageal cancer and reduces AKT signaling and proliferation of cancer cells. Gastroenterology 149(1825–36):e5

    Google Scholar 

  • Zagouri F, Sergentanis TN, Gazouli M, Tsigginou A, Dimitrakakis C, Papaspyrou I, Eleutherakis-Papaiakovou E, Chrysikos D, Theodoropoulos G, Zografos GC, Antsaklis A, Dimopoulos AM, Papadimitriou CA (2012) HSP90, HSPA8, HIF-1 alpha and HSP70-2 polymorphisms in breast cancer: a case–control study. Mol Biol Rep 39:10873–10879

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhou X, Chang H, Huang X, Guo X, Du X, Tian S, Wang L, Lyv Y, Yuan P, Xing J (2016) Hsp60 exerts a tumor suppressor function by inducing cell differentiation and inhibiting invasion in hepatocellular carcinoma. Oncotarget 7:68976–68989

    PubMed  PubMed Central  Google Scholar 

  • Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21:1010–1024

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Malatras A, Thorley M, Aghoghogbe I, Mer A, Duguez S, Butler-Browne G, Voit T, Duddy W (2015) Cell where: graphical display of interaction networks organized on subcellular localizations. Nucleic Acids Res 43:W571–W575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (nos. 81672473, 81502138), the Science and Technology Program of Guangdong (nos. 2014A030310390, 2017A030313181), the Department of Education, Guangdong Government under the Top-tier University Development Scheme for Research and Control of Infectious Diseases (2016034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enmin Li or Bingli Wu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: B. C. Yoo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Cai, X., Zhou, H. et al. The protein–protein interaction network and clinical significance of heat-shock proteins in esophageal squamous cell carcinoma. Amino Acids 50, 685–697 (2018). https://doi.org/10.1007/s00726-018-2569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2569-8

Keywords

Navigation