Amino Acids

, Volume 50, Issue 6, pp 685–697 | Cite as

The protein–protein interaction network and clinical significance of heat-shock proteins in esophageal squamous cell carcinoma

  • Hong Sun
  • Xinyi Cai
  • Haofeng Zhou
  • Xiaoqi Li
  • Zepeng Du
  • Haiying Zou
  • Jianyi Wu
  • Lei Xie
  • Yinwei Cheng
  • Wenming Xie
  • Xiaomei Lu
  • Liyan Xu
  • Longqi Chen
  • Enmin LiEmail author
  • Bingli WuEmail author
Original Article


Heat-shock proteins (HSPs), one of the evolutionarily conserved protein families, are widely found in various organisms, and play important physiological functions. Nevertheless, HSPs have not been systematically analyzed in esophageal squamous cell carcinoma (ESCC). In this study, we applied the protein–protein interaction (PPI) network methodology to explore the characteristics of HSPs, and integrate their expression in ESCC. First, differentially expressed HSPs in ESCC were identified from our previous RNA-seq data. By constructing a specific PPI network, we found differentially expressed HSPs interacted with hundreds of neighboring proteins. Subcellular localization analyses demonstrated that HSPs and their interacting proteins distributed in multiple layers, from membrane to nucleus. Functional enrichment annotation analyses revealed known and potential functions for HSPs. KEGG pathway analyses identified four significant enrichment pathways. Moreover, three HSPs (DNAJC5B, HSPA1B, and HSPH1) could serve as promising targets for prognostic prediction in ESCC, suggesting these HSPs might play a significant role in the development of ESCC. These multiple bioinformatics analyses have provided a comprehensive view of the roles of heat-shock proteins in esophageal squamous cell carcinoma.


Heat-shock protein Protein–protein interaction network Esophageal squamous cell carcinoma 



This work was supported by Grants from the National Natural Science Foundation of China (nos. 81672473, 81502138), the Science and Technology Program of Guangdong (nos. 2014A030310390, 2017A030313181), the Department of Education, Guangdong Government under the Top-tier University Development Scheme for Research and Control of Infectious Diseases (2016034).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

726_2018_2569_MOESM1_ESM.doc (1.7 mb)
Supplementary material 1 (DOC 1712 kb)
726_2018_2569_MOESM2_ESM.doc (195 kb)
Supplementary material 2 (DOC 195 kb)
726_2018_2569_MOESM3_ESM.xls (133 kb)
Supplementary material 3 (XLS 133 kb)


  1. Assenov Y, Ramírez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284CrossRefPubMedGoogle Scholar
  2. Bablani Popli D, Sircar K, Chowdhry A, Rani V (2015) Role of heat shock proteins in oral squamous cell carcinoma: a systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159:366–371PubMedGoogle Scholar
  3. Barsky A, Gardy JL, Hancock RE, Munzner T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23:1040–1042CrossRefPubMedGoogle Scholar
  4. Batulan Z, Pulakazhi Venu VK, Li Y, Koumbadinga G, Alvarez-Olmedo DG, Shi C, O’Brien ER (2016) Extracellular release and signaling by heat shock protein 27: role in modifying vascular inflammation. Front Immunol 7:285CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bond U, Schlesinger MJ (1987) Heat shock proteins and development. Adv Genet 24:1–29PubMedGoogle Scholar
  6. Braga ACS, Carneiro BM, Batista MN, Akinaga MM, Bittar C, Rahal P (2017) Heat shock proteins HSPB8 and DNAJC5B have HCV antiviral activity. PLoS One 12:e0188467CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown MA, Foreman K, Harriss J, Das C, Zhu L, Edwards M, Shaaban S, Tucker H (2015) C-terminal domain of SMYD3 serves as a unique HSP90-regulated motif in oncogenesis. Oncotarget 6:4005–4019PubMedPubMedCentralGoogle Scholar
  8. Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10:7252–7259CrossRefPubMedGoogle Scholar
  9. Carlson MR, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF (2006) Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genom 7:40CrossRefGoogle Scholar
  10. Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O’Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41(Database issue):D816–D823PubMedGoogle Scholar
  11. Chatterjee S, Burns TF (2017) Targeting heat shock proteins in Cancer: a promising therapeutic approach. Int J Mol Sci 18(9):1978–2017CrossRefPubMedCentralGoogle Scholar
  12. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66:115–132CrossRefPubMedGoogle Scholar
  13. Cooper LA, Demicco EG, Saltz JH, Powell RT, Rao A, Lazar AJ (2018) PanCancer insights from The Cancer Genome Atlas: the pathologist's perspective. J Pathol 244:512–524. CrossRefPubMedGoogle Scholar
  14. Dallago C, Goldberg T, Andrade-Navarro MA, Alanis-Lobato G, Rost B (2017) CellMap visualizes protein-protein interactions and subcellular localization. F1000Research 6:1824CrossRefPubMedGoogle Scholar
  15. De Maio A, Vazquez D (2013) Extracellular heat shock proteins: a new location, a new function. Shock 40:239–246CrossRefPubMedPubMedCentralGoogle Scholar
  16. Du ZP, Wu BL, Wu X, Lin XH, Qiu XY, Zhan XF, Wang SH, Shen JH, Zheng CP, Wu ZY, Xu LY, Wang D, Li EM (2015) A systematic analysis of human lipocalin family and its expression in esophageal carcinoma. Sci Rep 5:12010CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein function in the post-genomic era. Nature 405:823–826CrossRefPubMedGoogle Scholar
  18. Feder ME, Hofmann CE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282CrossRefPubMedGoogle Scholar
  19. García R, Merino D, Gómez JM, Nistal JF, Hurlé MA, Cortajarena AL, Villar AV (2016) Extracellular heat shock protein 90 binding to TGFβ receptor I participates in TGFβ-mediated collagen production in myocardial fibroblasts. Cell Signal 28:1563–1579CrossRefPubMedGoogle Scholar
  20. Goel R, Muthusamy B, Pandey A, Prasad TS (2011) Human protein reference database and human proteinpedia as discovery resources for molecular biotechnology. Mol Biotechnol 48:87–95CrossRefPubMedGoogle Scholar
  21. Gong J, Weng D, Eguchi T, Murshid A, Sherman MY, Song B, Calderwood SK (2015) Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis. Oncogene 34:5460–5471CrossRefPubMedGoogle Scholar
  22. Greene MK, Maskos K, Landry SJ (1998) Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc Natl Acad Sci USA 95:6108–6113CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hung MC, Link W (2011) Protein localization in disease and therapy. Cell Sci 124(Pt 20):3381–3392CrossRefGoogle Scholar
  24. Jagadish N, Parashar D, Gupta N, Agarwal S, Suri V, Kumar R, Suri V, Sadasukhi TC, Gupta A, Ansari AS, Lohiya NK, Suri A (2016) Heat shock protein 70-2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth. BMC Cancer 16:561CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kaigorodova EV, Bogatyuk MV (2014) Heat shock proteins as prognostic markers of cancer. Curr Cancer Drug Targets 14:713–726CrossRefPubMedGoogle Scholar
  26. Langer R, Ott K, Specht K, Becker K, Lordick F, Burian M, Herrmann K, Schrattenholz A, Cahill MA, Schwaiger M, Hofler H, Wester HJ (2008) Protein expression profiling in esophageal adenocarcinoma patients indicates association of heat shock protein 27 expression and chemotherapy response. Clin Cancer Res 14:8279–8288CrossRefPubMedGoogle Scholar
  27. Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 21:1109–1112CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li M, Wu X, Wang J, Pan Y (2012) Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinform 13:109CrossRefGoogle Scholar
  29. Li CQ, Huang GW, Wu ZY, Xu YJ, Li XC, Xue YJ, Zhu Y, Zhao JM, Li M, Zhang J, Wu JY, Lei F, Wang QY, Li S, Zheng CP, Ai B, Tang ZD, Feng CC, Liao LD, Wang SH, Shen JH, Liu YJ, Bai XF, He JZ, Cao HH, Wu BL, Wang MR, Lin DC, Koeffler HP, Wang LD, Li X, Li EM, Xu LY (2017) Integrative analyses of transcriptome sequencing identify novel functional lncRNAs in esophageal squamous cell carcinoma. Oncogenesis 6:e297CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lianos GD, Alexiou GA, Mangano A, Mangano A, Rausei S, Boni L, Dionigi G, Roukos DH (2015) The role of heat shock proteins in cancer. Cancer Lett 360:114–118CrossRefPubMedGoogle Scholar
  31. Liu X, Zhang M, Ying S, Zhang C, Lin R, Zheng J, Zhang G, Tian D, Guo Y, Du C, Chen Y, Chen S, Su X, Ji J, Deng W, Li X, Qiu S, Yan R, Xu Z, Wang Y, Guo Y, Cui J, Zhuang S, Yu H, Zheng Q, Marom M, Sheng S, Zhang G, Hu S, Li R, Su M (2017) Genetic alterations in esophageal tissues from squamous dysplasia to carcinoma. Gastroenterology 153:166–177CrossRefPubMedGoogle Scholar
  32. Mardan-Nik M, Pasdar A, Jamialahmadi K, Biabangard-Zak A, Mirhafez SR, Ghalandari M, Tajfard M, Mohebati M, Esmaily H, Ferns GA, Ghayour-Mobarhan M (2014) Association of heat shock protein70-2 (HSP70-2) gene polymorphism with coronary artery disease in an Iranian population. Gene 550:180–184CrossRefPubMedGoogle Scholar
  33. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913CrossRefPubMedGoogle Scholar
  34. Meares GP, Zmijewska AA, Jope RS (2008) HSP105 interacts with GRP78 and GSK3 and promotes ER stress-induced caspase-3 activation. Cell Signal 20:347–358CrossRefPubMedGoogle Scholar
  35. Meng L, Hunt C, Yaglom JA, Gabai VL, Sherman MY (2011) Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis. Oncogene 30:2836–2845CrossRefPubMedPubMedCentralGoogle Scholar
  36. Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5:e13984CrossRefPubMedPubMedCentralGoogle Scholar
  37. Miyazaki T, Kato H, Faried A, Sohda M, Nakajima M, Fukai Y, Masuda N, Manda R, Fukuchi M, Ojima H, Tsukada K, Kuwano H (2005) Predictors of response to chemo-radiotherapy and radiotherapy for esophageal squamous cell carcinoma. Anticancer Res 25:2749–2756PubMedGoogle Scholar
  38. Motulsky HJ (2007) Prism 5 statistics guide. GraphPad Software 31:39–42Google Scholar
  39. Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M (2005) Whole-proteome prediction of protein function via graph theoretic analysis of interaction maps. Bioinformatics 21:302–310CrossRefGoogle Scholar
  40. Nakajima M, Kato H, Miyazaki T, Fukuchi M, Masuda N, Fukai Y, Sohda M, Ahmad F, Kuwano H (2009) Tumor immune systems in esophageal cancer with special reference to heat shock protein 70 and humoral immunity. Anticancer Res 29:1595–1606PubMedGoogle Scholar
  41. Nakanishi K, Kamiguchi K, Torigoe T, Nabeta C, Hirohashi Y, Asanuma H, Tobioka H, Koge N, Harada O, Tamura Y, Nagano H, Yano S, Chiba S, Matsumoto H, Sato N (2004) Localization and function in endoplasmic reticulum stress tolerance of ERdj3, a new member of Hsp40 family protein. Cell Stress Chaperon 9:253–264CrossRefGoogle Scholar
  42. Noguchi T, Takeno S, Shibata T, Uchida Y, Yokoyama S, Müller W (2002) Expression of heat shock protein 70 in grossly resected esophageal squamous cell carcinoma. Ann Thorac Surg 74:222–226CrossRefPubMedGoogle Scholar
  43. Ohashi S, Miyamoto S, Kikuchi O, Goto T, Amanuma Y, Muto M (2015) Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology 149:1700–1715CrossRefPubMedGoogle Scholar
  44. Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Cell Mol Life Sci 18:571–573CrossRefGoogle Scholar
  45. Santos TG, Martins VR, Hajj GNM (2017) Unconventional secretion of heat shock proteins in cancer. Int J Mol Sci 18:946CrossRefPubMedCentralGoogle Scholar
  46. Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81:15–27CrossRefPubMedGoogle Scholar
  47. Sengupta U, Ukil S, Dimitrova N, Agrawal S (2009) Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications. PLoS One 4:e8100CrossRefPubMedPubMedCentralGoogle Scholar
  48. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432CrossRefPubMedGoogle Scholar
  49. Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497CrossRefPubMedGoogle Scholar
  50. Szondy K, Rusai K, Szabó AJ, Nagy A, Gal K, Fekete A, Kovats Z, Losonczy G, Lukacsovits J, Müller V (2012) Tumor cell expression of heat shock protein (HSP) 72 is influenced by HSP72 [HSPA1B A(1267)G] polymorphism and predicts survival in small cell lung cancer (SCLC) patients. Cancer Investig 30:317–322CrossRefGoogle Scholar
  51. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2012) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108CrossRefGoogle Scholar
  52. Tseng GC, Ghosh D, Feingold E (2012) Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res 40:3785–3799CrossRefPubMedPubMedCentralGoogle Scholar
  53. Vinayagam A, Gibso TE, Lee HJ, Yilmazel B, Roesel C, Hu Y, Kwon Y, Sharma A, Liu YY, Perrimon N, Barabási AL (2016) Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. Proc Natl Acad Sci USA 113:4976–4981CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wong HR (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 12:323–325CrossRefPubMedGoogle Scholar
  55. Wu J, Vallenius T, Ovaska K, Westermarck J, Mäkelä TP, Hautaniemi S (2009) Integrated network analysis platform for protein–protein interactions. Nat Methods 6:75–77CrossRefPubMedGoogle Scholar
  56. Wu B, Li C, Du Z, Yao Q, Wu J, Feng L, Zhang P, Li S, Xu L, Li E (2014) Network based analyses of gene expression profile of LCN2 overexpression in esophageal squamous cell carcinoma. Sci Rep 4:5403CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S (2017) Heat shock proteins and cancer. Trends Pharmacol Sci 38:226–256CrossRefPubMedGoogle Scholar
  58. Yang Z, Zhuang L, Szatmary P, Wen L, Sun H, Lu Y, Xu Q, Chen X (2015) Upregulation of heat shock proteins (HSPA12A, HSP90B1, HSPA4, HSPA5 and HSPA6) in tumour tissues is associated with poor outcomes from HBV-related early-stage hepatocellular carcinoma. Int J Med Sci 12:256–263CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yu N, Kakunda M, Pham V, Lill JR, Du P, Wongchenko M, Yan Y, Firestein R, Huang X (2015a) HSP105 recruits protein phosphatase 2A to dephosphorylate β-catenin. Mol Cell Biol 35:1390–1400CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yu VZ, Wong VC, Dai W, Ko JM, Lam AK, Chan KW, Samant RS, Lung HL, Shuen WH, Law S, Chan YP, Lee NP, Tong DK, Law TT, Lee VH, Lung ML (2015b) Nuclear localization of DNAJB6 is associated with survival of patients with esophageal cancer and reduces AKT signaling and proliferation of cancer cells. Gastroenterology 149(1825–36):e5Google Scholar
  61. Zagouri F, Sergentanis TN, Gazouli M, Tsigginou A, Dimitrakakis C, Papaspyrou I, Eleutherakis-Papaiakovou E, Chrysikos D, Theodoropoulos G, Zografos GC, Antsaklis A, Dimopoulos AM, Papadimitriou CA (2012) HSP90, HSPA8, HIF-1 alpha and HSP70-2 polymorphisms in breast cancer: a case–control study. Mol Biol Rep 39:10873–10879CrossRefPubMedGoogle Scholar
  62. Zhang J, Zhou X, Chang H, Huang X, Guo X, Du X, Tian S, Wang L, Lyv Y, Yuan P, Xing J (2016) Hsp60 exerts a tumor suppressor function by inducing cell differentiation and inhibiting invasion in hepatocellular carcinoma. Oncotarget 7:68976–68989PubMedPubMedCentralGoogle Scholar
  63. Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21:1010–1024CrossRefPubMedGoogle Scholar
  64. Zhu L, Malatras A, Thorley M, Aghoghogbe I, Mer A, Duguez S, Butler-Browne G, Voit T, Duddy W (2015) Cell where: graphical display of interaction networks organized on subcellular localizations. Nucleic Acids Res 43:W571–W575CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education InstitutesShantou University Medical CollegeShantouChina
  2. 2.Department of Biochemistry and Molecular BiologyShantou University Medical CollegeShantouChina
  3. 3.Department of Pathology, Shantou Central HospitalAffiliated Shantou Hospital of Sun Yat-sen UniversityShantouChina
  4. 4.Institute of Oncologic PathologyShantou University Medical CollegeShantouChina
  5. 5.Network and Information CenterShantou University Medical CollegeShantouChina
  6. 6.Tumor Hospital Affiliated to Xinjiang Medical UniversityÜrümqiChina
  7. 7.Department of Thoracic SurgeryWest China Hospital of Sichuan UniversitySichuanChina

Personalised recommendations