Amino Acids

pp 1–13 | Cite as

l-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes

Original Article
  • 51 Downloads

Abstract

l-Cysteine is a precursor of glutathione (GSH), a potent physiological antioxidant. Excess glucose-6-phosphate dehydrogenase (G6PD) deficiency in African Americans and low levels of l-cysteine diet in Hispanics can contributes to GSH deficiency and oxidative stress. Oxidative stress and monocyte adhesion was considered to be an initial event in the progression of vascular dysfunction and atherosclerosis. However, no previous study has investigated the contribution of GSH/G6PD deficiency to the expression of monocyte adhesion molecules. Using human U937 monocytes, this study examined the effect of GSH/G6PD deficiency and l-cysteine supplementation on monocyte adhesion molecules. G6PD/GSH deficiency induced by either siRNA or inhibitors (6AN/BSO, respectively) significantly (p < 0.005) increased the levels of cell adhesion molecules (ICAM-1, VCAM-1, SELL, ITGB1 and 2); NADPH oxidase (NOX), reactive oxygen species (ROS) and MCP-1 were upregulated, and decreases in levels of GSH, and nitric oxide were observed. The expression of ICAM-1 and VCAM-1 mRNA levels increased in high glucose, MCP-1 or TNF-α-treated G6PD-deficient compared to G6PD-normal cells. l-Cysteine treatment significantly (p < 0.005) increased G6PD activity and levels of GSH, and decreased NOX, ROS, and adhesion molecules. Thus, GSH/G6PD deficiency increases susceptibility to monocyte adhesion processes, whereas l-cysteine supplementation can restore cellular GSH/G6PD and attenuates NOX activity and expression of cell adhesion molecules.

Keywords

Monocytes Glucose-6-phosphate dehydrogenase deficiency Cell adhesion molecules Oxidative stress Glutathione l-Cysteine 

Abbreviations

6-AN

6-Aminonicotinamide

AA

African American

BCA

Bicinchoninic acid

BSO

Buthionine sulfoximine

CAM

Cell adhesion molecules

CCL2

Chemokine (C–C motif) ligand 2

CVD

Cardiovascular disease

G6PD

Glucose-6-phosphate dehydrogenase

GAPDH

Glyceraldehyde-3-phosphate dehydrogenase

GCLC

Glutamate–cysteine ligase catalytic subunit

GCLM

Glutamate–cysteine ligase modifier subunit

GSH

Glutathione

GSS

Glutathione synthetase

HG

High glucose

ICAM-1

Intercellular adhesion molecule 1

ITGB

Integrin subunit beta

KD

Knockdown

MCP-1

Monocyte chemoattractant protein 1

NO

Nitric oxide

NOX

NADPH oxidase

ROS

Reactive oxygen species

SELL

Selectin L

siRNA

Short interference RNA

SLC7A11

Solute carrier family 7 member

TNF-α

Tumor necrosis factor-α

VCAM-1

Vascular cell adhesion protein 1

Notes

Acknowledgements

The authors are supported by grants from the Malcolm W. Feist Cardiovascular Research Fellowship to Rajesh Parsanathan and Endowed Chair in Diabetes to Sushil K. Jain from the Center for Cardiovascular Diseases and Sciences (CCDS), LSUHSC, Shreveport. We also thank the Research Core Facility at Louisiana State University Health Sciences Center in Shreveport for generation of the gene expression data. Ms. Paula Polk kindly assisted with the 384-well block installation in the Applied Biosystems 7900HT Fast Real-Time PCR System. The authors thank Ms. Georgia Morgan for excellent editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

All authors listed have contributed to the conception, design, gathering, analysis or interpretation of data and have contributed to the writing and intellectual content of the article. All authors gave informed consent to the submission of this manuscript.

References

  1. Abid MR, Spokes KC, Shih SC, Aird WC (2007) NADPH oxidase activity selectively modulates vascular endothelial growth factor signaling pathways. J Biol Chem 282(48):35373–35385CrossRefPubMedGoogle Scholar
  2. Achari AE, Jain SK (2016) l-Cysteine supplementation increases adiponectin synthesis and secretion, and GLUT4 and glucose utilization by upregulating disulfide bond A-like protein expression mediated by MCP-1 inhibition in 3T3-L1 adipocytes exposed to high glucose. Mol Cell Biochem 414(1–2):105–113CrossRefPubMedGoogle Scholar
  3. Alegre-Diaz J, Herrington W, Lopez-Cervantes M, Gnatiuc L, Ramirez R, Hill M, Baigent C, McCarthy MI, Lewington S, Collins R, Whitlock G, Tapia-Conyer R, Peto R, Kuri-Morales P, Emberson JR (2016) Diabetes and cause-specific mortality in Mexico City. N Engl J Med 375(20):1961–1971CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aronson D, Rayfield EJ (2002) How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol 1:1CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aune D, Norat T, Romundstad P, Vatten LJ (2013) Dairy products and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Am J Clin Nutr 98(4):1066–1083CrossRefPubMedGoogle Scholar
  6. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P (2017) Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown-Riggs C (2015) Nutrition and health disparities: the role of dairy in improving minority health outcomes. Int J Environ Res Public Health 13(1):ijerph13010028CrossRefPubMedGoogle Scholar
  8. Butkowski EG, Jelinek HF (2017) Hyperglycaemia, oxidative stress and inflammatory markers. Redox Rep 22(6):257–264CrossRefPubMedGoogle Scholar
  9. Cappellini MD, Fiorelli G (2008) Glucose-6-phosphate dehydrogenase deficiency. Lancet 371(9606):64–74CrossRefPubMedGoogle Scholar
  10. Carette C, Dubois-Laforgue D, Gautier JF, Timsit J (2011) Diabetes mellitus and glucose-6-phosphate dehydrogenase deficiency: from one crisis to another. Diabetes Metab 37(1):79–82CrossRefPubMedGoogle Scholar
  11. Carroll JF, Fulda KG, Chiapa AL, Rodriquez M, Phelps DR, Cardarelli KM, Vishwanatha JK, Cardarelli R (2009) Impact of race/ethnicity on the relationship between visceral fat and inflammatory biomarkers. Obesity (Silver Spring) 17(7):1420–1427Google Scholar
  12. Ceriello A (2008) Cardiovascular effects of acute hyperglycaemia: pathophysiological underpinnings. Diab Vasc Dis Res 5(4):260–268CrossRefPubMedGoogle Scholar
  13. Deo SH, Holwerda SW, Keller DM, Fadel PJ (2015) Elevated peripheral blood mononuclear cell-derived superoxide production in healthy young black men. Am J Physiol Heart Circ Physiol 308(5):H548–H552CrossRefPubMedGoogle Scholar
  14. Diniz YS, Rocha KK, Souza GA, Galhardi CM, Ebaid GM, Rodrigues HG, Novelli Filho JL, Cicogna AC, Novelli EL (2006) Effects of N-acetylcysteine on sucrose-rich diet-induced hyperglycaemia, dyslipidemia and oxidative stress in rats. Eur J Pharmacol 543(1–3):151–157CrossRefPubMedGoogle Scholar
  15. Estevez F, De Angelo T, Vesell ES (1994) Basal and paracetamol-depleted glutathione from human lymphocytes: ethnic variability. Acta Physiol Pharmacol Ther Latinoam 44(1–2):48–54PubMedGoogle Scholar
  16. Feairheller DL, Park JY, Sturgeon KM, Williamson ST, Diaz KM, Veerabhadrappa P, Brown MD (2011) Racial differences in oxidative stress and inflammation: in vitro and in vivo. Clin Transl Sci 4(1):32–37CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fontaine J, Schirmer B, Horr J (2002) Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum. J Agric Food Chem 50(14):3902–3911CrossRefPubMedGoogle Scholar
  18. Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ (2009) Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Asp Med 30(1–2):86–98CrossRefGoogle Scholar
  19. Franze A, Ferrante MI, Fusco F, Santoro A, Sanzari E, Martini G, Ursini MV (1998) Molecular anatomy of the human glucose 6-phosphate dehydrogenase core promoter. FEBS Lett 437(3):313–318CrossRefPubMedGoogle Scholar
  20. Fratta Pasini A, Albiero A, Stranieri C, Cominacini M, Pasini A, Mozzini C, Vallerio P, Cominacini L, Garbin U (2012) Serum oxidative stress-induced repression of Nrf2 and GSH depletion: a mechanism potentially involved in endothelial dysfunction of young smokers. PLoS One 7(1):e30291CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gaskin RS, Estwick D, Peddi R (2001) G6PD deficiency: its role in the high prevalence of hypertension and diabetes mellitus. Ethn Dis 11(4):749–754PubMedGoogle Scholar
  22. Go YM, Jones DP (2005) Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state. Circulation 111(22):2973–2980CrossRefPubMedGoogle Scholar
  23. Go YM, Jones DP (2011) Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med 50(4):495–509CrossRefPubMedGoogle Scholar
  24. Golden SH, Brown A, Cauley JA, Chin MH, Gary-Webb TL, Kim C, Sosa JA, Sumner AE, Anton B (2012) Health disparities in endocrine disorders: biological, clinical, and nonclinical factors—an Endocrine Society scientific statement. J Clin Endocrinol Metab 97(9):E1579–E1639CrossRefPubMedPubMedCentralGoogle Scholar
  25. Golias C, Tsoutsi E, Matziridis A, Makridis P, Batistatou A, Charalabopoulos K (2007) Review. Leukocyte and endothelial cell adhesion molecules in inflammation focusing on inflammatory heart disease. In Vivo 21(5):757–769PubMedGoogle Scholar
  26. Griffith OW (1982) Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem 257(22):13704–13712PubMedGoogle Scholar
  27. Gulvady AA, Brown RC, Bell JA (2013) Nutritional comparison of oats and other commonly consumed whole grains. In: Chu Y (ed) Oats Nutrition and Technology, Wiley, pp 71–93Google Scholar
  28. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3):345–357CrossRefPubMedGoogle Scholar
  29. Hackler LR (1985) Cereal proteins in human nutrition. In: Lásztity R, Hidvégi M (eds) Amino Acid Composition and Biological Value of Cereal Proteins. Springer, DordrechtGoogle Scholar
  30. Hillis GS, Flapan AD (1998) Cell adhesion molecules in cardiovascular disease: a clinical perspective. Heart 79(5):429–431CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ho HY, Cheng ML, Lu FJ, Chou YH, Stern A, Liang CM, Chiu DT (2000) Enhanced oxidative stress and accelerated cellular senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts. Free Radic Biol Med 29(2):156–169CrossRefPubMedGoogle Scholar
  32. Iyer SS, Accardi CJ, Ziegler TR, Blanco RA, Ritzenthaler JD, Rojas M, Roman J, Jones DP (2009) Cysteine redox potential determines pro-inflammatory IL-1beta levels. PLoS One 4(3):e5017CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jain SK, Palmer M (1996) Effect of glucose-6-phosphate dehydrogenase deficiency on reduced and oxidized glutathione and lipid peroxide levels in the blood of African-Americans. Clin Chim Acta 253(1–2):181–183CrossRefPubMedGoogle Scholar
  34. Jain SK, Velusamy T, Croad JL, Rains JL, Bull R (2009) l-Cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1, and oxidative stress and inhibits NF-kappaB activation in the livers of Zucker diabetic rats. Free Radic Biol Med 46(12):1633–1638CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jain SK, Manna P, Micinski D, Lieblong BJ, Kahlon G, Morehead L, Hoeldtke R, Bass PF 3rd, Levine SN (2013) In African American type 2 diabetic patients, is vitamin D deficiency associated with lower blood levels of hydrogen sulfide and cyclic adenosine monophosphate, and elevated oxidative stress? Antioxid Redox Signal 18(10):1154–1158CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jain SK, Micinski D, Huning L, Kahlon G, Bass PF, Levine SN (2014) Vitamin D and l-cysteine levels correlate positively with GSH and negatively with insulin resistance levels in the blood of type 2 diabetic patients. Eur J Clin Nutr 68(10):1148–1153CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jain SK, Kahlon G, Bass P, Levine SN, Warden C (2015) Can l-cysteine and vitamin D rescue vitamin D and vitamin D binding protein levels in blood plasma of African American type 2 diabetic patients? Antioxid Redox Signal 23(8):688–693CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jain SK, Kanikarla-Marie P, Warden C, Micinski D (2016) l-Cysteine supplementation upregulates glutathione (GSH) and vitamin D binding protein (VDBP) in hepatocytes cultured in high glucose and in vivo in liver, and increases blood levels of GSH, VDBP, and 25-hydroxy-vitamin D in Zucker diabetic fatty rats. Mol Nutr Food Res 60(5):1090–1098CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kalinowski L, Dobrucki IT, Malinski T (2004) Race-specific differences in endothelial function: predisposition of African Americans to vascular diseases. Circulation 109(21):2511–2517CrossRefPubMedGoogle Scholar
  40. Koehler P, Wieser H (2013) Chemistry of cereal grains. In: Gobbetti M, Gänzle M (eds) Handbook on sourdough biotechnology. Springer, USA, pp 1–45Google Scholar
  41. Kohler E, Barrach H, Neubert D (1970) Inhibition of NADP dependent oxidoreductases by the 6-aminonicotinamide analogue of NADP. FEBS Lett 6(3):225–228CrossRefPubMedGoogle Scholar
  42. Kumar P, Maurya PK (2013) l-Cysteine efflux in erythrocytes as a function of human age: correlation with reduced glutathione and total anti-oxidant potential. Rejuvenation Res 16(3):179–184CrossRefPubMedGoogle Scholar
  43. Leopold JA, Cap A, Scribner AW, Stanton RC, Loscalzo J (2001) Glucose-6-phosphate dehydrogenase deficiency promotes endothelial oxidant stress and decreases endothelial nitric oxide bioavailability. FASEB J 15(10):1771–1773CrossRefPubMedGoogle Scholar
  44. Manea A, Tanase LI, Raicu M, Simionescu M (2010) Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells. Biochem Biophys Res Commun 11(396):901–907CrossRefGoogle Scholar
  45. Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11(11):2685–2700CrossRefPubMedPubMedCentralGoogle Scholar
  46. Martin J, Collot-Teixeira S, McGregor L, McGregor JL (2007) The dialogue between endothelial cells and monocytes/macrophages in vascular syndromes. Curr Pharm Des 13(17):1751–1759CrossRefPubMedGoogle Scholar
  47. Martinovic I, Abegunewardene N, Seul M, Vosseler M, Horstick G, Buerke M, Darius H, Lindemann S (2005) Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease. Circ J 69(12):1484–1489CrossRefPubMedGoogle Scholar
  48. Mestas J, Ley K (2008) Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc Med 18(6):228–232CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mimura J, Itoh K (2015) Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radic Biol Med 88(Pt B):221–232CrossRefPubMedGoogle Scholar
  50. Morris AA, Zhao L, Patel RS, Jones DP, Ahmed Y, Stoyanova N, Gibbons GH, Vaccarino V, Din-Dzietham R, Quyyumi AA (2012) Differences in systemic oxidative stress based on race and the metabolic syndrome: the Morehouse and Emory Team up to Eliminate Health Disparities (META-Health) study. Metab Syndr Relat Disord 10(4):252–259CrossRefPubMedPubMedCentralGoogle Scholar
  51. Muller WA (2014) How endothelial cells regulate transmigration of leukocytes in the inflammatory response. Am J Pathol 184(4):886–896CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E (2009) The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol Dis 42(3):267–278CrossRefPubMedGoogle Scholar
  53. Nobrega-Pereira S, Fernandez-Marcos PJ, Brioche T, Gomez-Cabrera MC, Salvador-Pascual A, Flores JM, Vina J, Serrano M (2016) G6PD protects from oxidative damage and improves healthspan in mice. Nat Commun 7:10894CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pinna A, Contini EL, Carru C, Solinas G (2013) Glucose-6-phosphate dehydrogenase deficiency and diabetes mellitus with severe retinal complications in a Sardinian population, Italy. Int J Med Sci 10(13):1907–1913CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rawat DK, Hecker P, Watanabe M, Chettimada S, Levy RJ, Okada T, Edwards JG, Gupte SA (2012) Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte l-type calcium channel activity and myocardial contractile function. PLoS One 7(10):e45365CrossRefPubMedPubMedCentralGoogle Scholar
  56. Reliene R, Schiestl RH (2006) Glutathione depletion by buthionine sulfoximine induces DNA deletions in mice. Carcinogenesis 27(2):240–244CrossRefPubMedGoogle Scholar
  57. Rubinstein R, Genaro AM, Motta A, Cremaschi G, Wald MR (2008) Impaired immune responses in streptozotocin-induced type I diabetes in mice. Involvement of high glucose. Clin Exp Immunol 154(2):235–246CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ruoslahti E, Engvall E (1997) Integrins and vascular extracellular matrix assembly. J Clin Invest 100(11 Suppl):S53–S56PubMedGoogle Scholar
  59. Satia JA (2009) Diet-related disparities: understanding the problem and accelerating solutions. J Am Diet Assoc 109(4):610–615CrossRefPubMedPubMedCentralGoogle Scholar
  60. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108CrossRefPubMedGoogle Scholar
  61. Spolarics Z, Siddiqi M, Siegel JH, Garcia ZC, Stein DS, Ong H, Livingston DH, Denny T, Deitch EA (2001) Increased incidence of sepsis and altered monocyte functions in severely injured type A- glucose-6-phosphate dehydrogenase-deficient African American trauma patients. Crit Care Med 29(4):728–736CrossRefPubMedGoogle Scholar
  62. Stark J (2015) Oxidative stress and atherosclerosis. Orv Hetil 156(28):1115–1119CrossRefPubMedGoogle Scholar
  63. Tiwari BK, Pandey KB, Abidi AB, Rizvi SI (2013) Markers of oxidative stress during diabetes mellitus. J Biomark 2013:378790PubMedPubMedCentralGoogle Scholar
  64. Villalpando S, de la Cruz V, Rojas R, Shamah-Levy T, Avila MA, Gaona B, Rebollar R, Hernandez L (2010) Prevalence and distribution of type 2 diabetes mellitus in Mexican adult population: a probabilistic survey. Salud Publica Mex 52(Suppl 1):S19–S26CrossRefPubMedGoogle Scholar
  65. Yin J, Ren W, Yang G, Duan J, Huang X, Fang R, Li C, Li T, Yin Y, Hou Y, Kim SW, Wu G (2016) l-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res 60(1):134–146CrossRefPubMedGoogle Scholar
  66. Yoshimura T (2018) The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally? Cell Mol Immunol.  https://doi.org/10.1038/cmi.2017.135 Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pediatrics and Center for Cardiovascular Diseases and SciencesLouisiana State University Health Sciences Center-ShreveportShreveportUSA

Personalised recommendations