Amino Acids

, Volume 50, Issue 6, pp 735–746 | Cite as

Polymorphism at donkey β-lactoglobulin II locus: identification and characterization of a new genetic variant with a very low expression

  • Andrea Criscione
  • Vincenzo CunsoloEmail author
  • Serena Tumino
  • Antonella Di Francesco
  • Salvatore Bordonaro
  • Vera Muccilli
  • Rosaria Saletti
  • Donata Marletta
Original Article


In the last years, donkey milk had evidenced a renewed interest as a potential functional food and a breast milk substitute. In this light, the study of the protein composition assumes an important role. In particular, β-lactoglobulin (β-LG), which is considered as one of the main allergenic milk protein, in donkey species consists of two molecular forms, namely β-LG I and β-LG II. In the present research, a genetic analysis coupled with a proteomic approach showed the presence of a new allele, here named F, which is apparently associated with a null or a severely reduced expression of β-LG II protein. The new β-LG II F genetic variant shows a theoretical average mass (Mav) of 18,310.64 Da, a value practically corresponding with that of the variant D (∆mass < 0.07 Da), but differs from β-LG II D for two amino acid substitutions: Thr100 (variant F) → Ala100 (variant D) and Thr118 (variant F) → Met118 (variant D). Proteomic investigation of the whey protein fraction of an individual milk sample, homozygous FF at β-LG II locus, allowed to identify, as very minor component, the new β-LG II F genetic variant. By MS/MS analysis of enzymatic digests, the sequence of the β-LG II F was characterized, and the predicted genomic data confirmed.


Polymorphism LGB2 gene Donkey milk Allergy Mass spectrometry SNPs 



This work was supported by grants from PO FERS 2007/13 4.1.2.A, project “Piattaforma regionale di ricerca translazionale per la salute”, CUP B65E12000570008. The authors gratefully acknowledge the Bio-Nanotech Research and Innovation Tower (BRIT; PON project financed by the Italian Ministry for Education, University and Research, MIUR) for the availability of the Orbitrap Fusion mass spectrometer.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

726_2018_2555_MOESM1_ESM.docx (4.4 mb)
Supplementary material 1 (DOCX 4504 kb)


  1. Ballabio C, Chessa S, Rignanese D, Gigliotti C, Pagnacco G, Terracciano L, Fiocchi A, Restani P, Caroli M (2011) Goat milk allergenicity as a function of αS1-casein genetic polymorphism. J Dairy Sci 94:998–1004. CrossRefPubMedGoogle Scholar
  2. Bertino E, Gastaldi D, Monti G, Baro C, Fortunato D, Perono Garoffo L, Coscia A, Fabris C, Mussap M, Conti A (2010) Detailed proteomic analysis on DM: insight into its hypoallergenicity. Front Biosci 2:526–536CrossRefGoogle Scholar
  3. Brumini D, Criscione A, Bordonaro S, Vegarud GE, Marletta D (2016) Whey proteins and their antimicrobial properties in donkey milk: a brief review. Dairy Sci Technol 96:1–14. CrossRefGoogle Scholar
  4. Chianese L, De Simone C, Ferranti P, Mauriello R, Costanzo A, Quarto M, Garro G, Picariello G, Mamone G, Ramunno L (2013) Occurrence of qualitative and quantitative polymorphism at donkey betalactoglobulin II locus. Food Res Int 54:1273–1279. CrossRefGoogle Scholar
  5. Claeys WL, Verraes C, Cardoen S, De Block J, Huyghebaert A, Raes K, Dewettinck K, Herman L (2014) Consumption of raw or heated milk from different species: an evaluation of the nutritional and potential health benefits. Food Control 42:188–201CrossRefGoogle Scholar
  6. Conti A, Godovac-Zimmermann J, Liberatori J, Braunitzer G (1984) The primary structure of monomeric beta-lactoglobulin I from horse colostrum (Equus caballus, Perissodactyla). Hoppe Seylers Z Physiol Chem 365:1393–1401CrossRefPubMedGoogle Scholar
  7. Criscione A, Cunsolo V, Bordonaro S, Guastella AM, Saletti R, Zuccaro A, D’Urso G, Marletta D (2009) Donkeys’ milk protein fraction investigated by electrophoretic methods and mass spectrometric analysis. Int Dairy J 19:190–197. CrossRefGoogle Scholar
  8. Cunsolo V, Costa A, Saletti R, Muccilli V, Foti S (2007) Detection and sequence determination of a new variant beta-lactoglobulin II from donkey. Rapid Commun Mass Spectrom 21:1438–1446. CrossRefPubMedGoogle Scholar
  9. Cunsolo V, Cairone E, Fontanini D, Criscione A, Muccilli V, Saletti R, Foti S (2009a) Sequence determination of alpha(s1)-casein isoforms from donkey by mass spectrometric methods. J Mass Spectrom 44:1742–1753. PubMedGoogle Scholar
  10. Cunsolo V, Cairone E, Saletti R, Muccilli V, Foti S (2009b) Sequence and phosphorylation level determination of two donkey beta-caseins by mass spectrometry. Rapid Commun Mass Spectrom 23:1907–1916. CrossRefPubMedGoogle Scholar
  11. Cunsolo V, Muccilli V, Saletti R, Foti S (2013) MALDI-TOF mass spectrometry for the monitoring of she-donkey’s milk contamination or adulteration. J Mass Spectrom 48:148–153CrossRefPubMedGoogle Scholar
  12. Cunsolo V, Muccilli V, Saletti R, Foti S (2014) Mass spectrometry in food proteomics: a tutorial. J Mass Spectrom 49:768–784. CrossRefPubMedGoogle Scholar
  13. Cunsolo V, Saletti R, Muccilli V, Gallina S, Di Francesco A, Foti S (2017) Proteins and bioactive peptides from donkey milk: the molecular basis for its reduced allergenic properties. Food Res Int. PubMedGoogle Scholar
  14. European Commission. 2010. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. In: Official Journal of the European Union. L 276/33. 20.10.2010Google Scholar
  15. Godovac-Zimmermann J, Conti A, Liberatori J, Braunitzer G (1985) The amino-acid sequence of beta-lactoglobulin II from horse colostrum (Equus caballus, Perissodactyla): beta-lactoglobulins are retinol-binding proteins. Biol Chem Hoppe Seyler 366:601–608CrossRefPubMedGoogle Scholar
  16. Godovac-Zimmermann J, Conti A, James L, Napolitano L (1988) Microanalysis of the amino-acid sequence of monomeric beta-lactoglobulin I from donkey (Equus asinus) milk. Biol Chem H-S 369:171–179Google Scholar
  17. Godovac-Zimmermann J, Conti A, Sheil M, Napolitano L (1990) Covalent structure of the minor monomeric β-lactoglobulin II component from donkey milk. Biol Chem H-S 371:871–879Google Scholar
  18. Goraczko AJ (2005) Molecular mass and location of the most abundant peak of the molecular ion isotopomeric cluster. J Mol Model 11:271–277CrossRefPubMedGoogle Scholar
  19. Herrouin M, Mollé D, Faunquant J, Ballestra F, Maubois JL, Léonil J (2000) New variants identified in donkey’s milk whey proteins. J Protein Chem 19:105–115CrossRefPubMedGoogle Scholar
  20. Horn DM, Zubarev RA, McLafferty FW (2000) Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J Am Soc Mass Spectrom 11:320–332CrossRefPubMedGoogle Scholar
  21. Malacarne M, Criscione A, Franceschi P, Tumino S, Bordonaro S, Di Frangia F, Marletta D, Summer A (2017) Distribution of Ca, P and Mg and casein micelle mineralisation in donkey milk from the second to ninth month of lactation. Int Dairy J 66:1–5CrossRefGoogle Scholar
  22. Mansueto P, Iacono G, Taormina G, Seidita A, D’Alcamo A, Adragna F, Randazzo G, Carta Rini G, Carroccio A (2013) Ass’s milk in allergy to cow’s milk protein: a review. Acta Med Mediterr 29:153–160Google Scholar
  23. Marletta D, Criscione A, Bordonaro S, Guastella AM, D’Urso G (2007) Casein polymorphism in goat’s milk. Le Lait 87:491–504CrossRefGoogle Scholar
  24. Marletta D, Tidona F, Bordonaro S (2016) Donkey milk proteins: digestibility and nutritional significance. In: “Milk Proteins—From Structure to Biological Properties and Health Aspects” pp 199–209.
  25. McCarthy C, Carrea A, Diambra L (2017) Bicodon bias can determine the role of synonymous SNPs in human diseases. BMC Genom 18:227. CrossRefGoogle Scholar
  26. Medhammar E, Wijesinha-Bettoni R, Stadlmayr B, Nilsson E, Charrondiere UR, Burlingame B (2012) Composition of milk from minor dairy animals and buffalo breeds: a biodiversity perspective. J Sci Food Agr 92:445–474. CrossRefGoogle Scholar
  27. Mitra S, Ray SK, Banerjee R (2016) Synonymous codons influencing gene expression in organisms. Rese Rep Biochem 6:57–65CrossRefGoogle Scholar
  28. Monti G, Viola S, Baro C, Cresi F, Tovo PA, Moro G, Ferrero MP, Conti A, Bertino E (2012) Tolerability of donkey’s milk in 92 highly-problematic cow’s milk allergic children. J Biol Regul Homeost Agents 26:75–82PubMedGoogle Scholar
  29. Ochirkhuyag B, Chobert JM, Dalgalarrondo M, Haertlé T (2000) Characterization of mare caseins. Identification of αs1- and αs2-caseins. Lait 80:223–235CrossRefGoogle Scholar
  30. Restani P, Ballabio C, Di Lorenzo C (2009) Molecular aspects of milk allergens and their role in clinical events. Anal Bioanal Chem 395:47–56CrossRefPubMedGoogle Scholar
  31. Saletti R, Muccilli V, Cunsolo V, Fontanini D, Capocchi A, Foti S (2012) MS-based characterization of as2-casein isoforms in donkey’s milk. J Mass Spectrom 47:1150–1159. CrossRefPubMedGoogle Scholar
  32. Salimei E, Fantuz F (2012) Equid milk for human consumption. Int Dairy J 24:130–142. CrossRefGoogle Scholar
  33. Senko MW, Beu SC, McLafferty FW (1995) Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions. J Am Soc Mass Spectrom 6:229–233CrossRefPubMedGoogle Scholar
  34. Skoog B, Wichman A (1986) Calculation of the isoelectric points of polypeptides from the amino acid composition. Trends Anal Chem 5:82–83CrossRefGoogle Scholar
  35. Swaisgood HE (1995) Protein and amino acid composition of bovine milk. In: Jensen RC (ed) Handbook of milk composition. Academic Press Inc., San Diego, pp 464–468CrossRefGoogle Scholar
  36. Swar MO (2011) Donkey milk-based formula: a substitute for patients with cow’s milk protein allergy. Sudan J Paediatr 11:21–24Google Scholar
  37. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tidona F, Sekse C, Criscione A, Jacobsen M, Bordonaro S, Marletta D, Vegarud GE (2011) Antimicrobial effect of donkeys’ milk digested in vitro with human gastrointestinal enzymes. Int Dairy J 21:158–165. CrossRefGoogle Scholar
  39. Tidona F, Criscione A, Devold TG, Bordonaro S, Marletta D, Vegarud GE (2014) Protein composition and micelle size of donkey milk with different protein patterns: effects on digestibility. Int Dairy J 35:57–62. CrossRefGoogle Scholar
  40. Vincenzetti S, Foghini L, Pucciarelli S, Polzonetti Cammertoni N, Beghelli D, Polidori P (2014) Hypoallergenic properties of donkey’s milk: a preliminary study. Vet Ital 50:99–107. PubMedGoogle Scholar
  41. Wal JM (2002) Cow’s milk proteins/allergens. Ann Allergy Asthma Immunol 89:3–10. CrossRefPubMedGoogle Scholar
  42. Waserman S, Watson W (2011) Food allergy. Allergy Asthma Clin Immunol 7(Suppl 1):57. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Animal Production Section, Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
  2. 2.Department of Chemical SciencesUniversity of CataniaCataniaItaly

Personalised recommendations