Skip to main content
Log in

4-Chloro-3-nitro-N-butylbenzenesulfonamide acts on KV3.1 channels by an open-channel blocker mechanism

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

A Correction to this article was published on 12 October 2017

This article has been updated

Abstract

The effects of 4-chloro-3-nitro-N-butylbenzenesulfonamide (SMD2) on KV3.1 channels, heterologous expressed in L-929 cells, were studied with the whole cell patch-clamp technique. SMD2 blocks KV3.1 in a reversible and use-dependent manner, with IC50 around 10 µM, and a Hill coefficient around 2. Although the conductance vs. voltage relationship in control condition can be described by a single Boltzmann function, two terms are necessary to describe the data in the presence of SMD2. The activation and deactivation time constants are weakly voltage dependent both for control and in the presence of SMD2. SMD2 does not change the channel selectivity and tail currents show a typical crossover phenomenon. The time course of inactivation has a fast and a slow component, and SMD2 significantly decreased their values. Steady-state inactivation is best described by a Boltzmann equation with V 1/2 (the voltage where the probability to find the channels in the inactivated state is 50%) and K (slope factor) equals to −22.9 ± 1.5 mV and 5.3 ± 0.9 mV for control, and −30.3 ± 1.3 mV and 6 ± 0.8 mV for SMD2, respectively. The action of SMD2 is enhanced by high frequency stimulation, and by the time the channel stays open. Taken together, our results suggest that SMD2 blocks the open conformation of KV3.1. From a pharmacological and therapeutic point of view, N-alkylsulfonamides may constitute a new class of pharmacological modulators of KV3.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 12 October 2017

    Unfortunately, grey trace on Figure 2c was missing in the original publication of the article.

References

  • Aiyar J, Nguyen AN, Chandy KG, Grissmer S (1994) The P-region and S6 of Kv3.1 contribute to the formation of the ion conduction pathway. Biophys J 67:2261–2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong CM (1969) Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol 54:553–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baukrowitz T, Yellen G (1996) Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel. Science 271:653–656

    Article  CAS  PubMed  Google Scholar 

  • Boddum K, Hougaard C, Xiao-Ying Lin J, von Schoubye NL, Jensen HS, Grunnet M, Jespersen T (2017) Kv3.1/Kv3.2 channel positive modulators enable faster activating kinetics and increase firing frequency in fast-spiking GABAergic interneurons. Neuropharmacology 118:102–112

    Article  CAS  PubMed  Google Scholar 

  • Brock MW, Mathes C, Gilly WF (2001) Selective open-channel block of Shaker (Kv1) potassium channels by s-nitrosodithiothreitol (SNDTT). J Gen Physiol 118:113–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng YM, Azer J, Niven CM, Mafi P, Allard CR, Qi J, Thouta S, Claydon TW (2011) Molecular determinants of U-type inactivation in Kv2.1 channels. Biophys J 101:651–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi BH, Choi J-S, Yoon SH, Rhie D-J, Min DS, Jo Y-H, Kim M-S, Hahn SJ (2001) Effects of norfluoxetine, the major metabolite of fluoxetine, on the cloned neuronal potassium channel Kv3.1. Neuropharmacology 41:443–453

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Kaczmarek LK (1998) When, where, and how much? Expression of the Kv3.1 potassium channel in high-frequency firing neurons. J Neurobiol 37:69–79

    Article  CAS  PubMed  Google Scholar 

  • Grissmer S, Ghanshani S, Dethlefs B, McPherson JD, Wasmuth JJ, Gutman GA, Cahalan MD, Chandy KG (1992) The Shaw-related potassium channel gene, Kv3.1, on human chromosome-11, encodes the type-L K+ channel in T-cells. J Biol Chem 267:20971–20979

    CAS  PubMed  Google Scholar 

  • Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45:1227–1234

    CAS  PubMed  Google Scholar 

  • Gross MF, Beaudoin S, McNaughton-Smith G, Amato GS, Castle NA, Huang C, Zou A, Yu W (2007) Aryl sulfonamido indane inhibitors of the Kv1.5 ion channel. Bioorg Med Chem Lett 17:2849–2853

    Article  CAS  PubMed  Google Scholar 

  • Gross MF, Castle NA, Zou A, Wickenden AD, Yu W, Spear KL (2009) Aryl sulfonamido tetralin inhibitors of the Kv1.5 ion channel. Bioorg Med Chem Lett 19:3063–3066

    Article  CAS  PubMed  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  • Heginbotham L, Kutluay E (2004) Revisiting voltage-dependent relief of block in ion channels: a mechanism independent of punchthrough. Biophys J 86:3663–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille B (2001) Potassium channels and chloride channels. In: Hille B (ed) Ion channels of excitable membranes. Sinauer Associates Inc, Sunderland, pp 131–167

    Google Scholar 

  • Ikeda SR, Korn SJ (1995) Influence of permeating ions on potassium channel block by external tetraethylammonium. J Physiol 486:267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamieson Q, Jones SW (2013) Role of outer-pore residue Y380 in U-type inactivation of Kv2.1 channels. J Membr Biol 246:633–645

    Article  CAS  PubMed  Google Scholar 

  • Kim SE, Ahn HS, Choi BH, Jang H-J, Kim M-J, Rhie D-J, Yoon S-H, Jo Y-H, Kim M-S, Sung K-W, Hahn SJ (2007) Open channel block of A-type, Kv4.3, and delayed rectifier K+ channels, Kv1.3 and Kv3.1, by sibutramine. J Pharmacol Exp Ther 321:753–762

    Article  CAS  PubMed  Google Scholar 

  • Klemic KG, Kirsch GE, Jones SW (2001) U-type inactivation of Kv3.1 and Shaker potassium channels. Biophys J 81:814–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopljar I, Labro AJ, Cuypers E, Johnson HWB, Rainier JD, Tytgat J, Snyders DJ (2009) A polyether biotoxin binding site on the lipid-exposed face of the pore domain of Kv channels revealed by the marine toxin gambierol. Proc Natl Acad Sci USA 106:9896–9901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Kaczmarek LK, Perney TM (2001) Localization of two high-threshold potassium channel subunits in the rat central auditory system. J Comp Neurol 437:196–218

    Article  CAS  PubMed  Google Scholar 

  • Lien C-C, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058–2068

    CAS  PubMed  Google Scholar 

  • Lloyd J, Atwal KS, Finlay HJ, Nyman M, Huynh T, Bhandaru R, Kover A, Schmidt J, Vaccaro W, Conder ML, Jenkins-West T, Levesque P (2007) Benzopyran sulfonamides as Kv1.5 potassium channel blockers. Bioorg Med Chem Lett 17:3271–3275

    Article  CAS  PubMed  Google Scholar 

  • Martins CC, Bassetto CAZ, Santos JM, Eberlin MN, Magalhães A, Varanda WA, Gonzalez ERP (2016) Mass spectrometry study of N-alkylbenzenesulfonamides with potential antagonist activity to potassium channels. Amino Acids 48:445–459

    Article  CAS  PubMed  Google Scholar 

  • McCrossan ZA, Lewis A, Panaghie G, Jordan PN, Christini DJ, Lerner DJ, Abbott GW (2003) MinK-related peptide 2 modulates Kv2.1 and Kv3.1 potassium channels in mammalian brain. J Neurosci 23:8077–8091

    CAS  PubMed  Google Scholar 

  • Olsson RI, Jacobson I, Iliefski T, Boström J, Davidsson Ö, Fjellström O, Björe A, Olsson C, Sundell J, Gran U, Gyll J, Malmberg J, Hidestål O, Emtenäs H, Svensson T, Yuan Z-Q, Strandlund G, Åstrand A, Lindhardt E, Linhardt G, Forsström E, Högberg Å, Persson F, Andersson B, Rönnborg A, Löfberg B (2014) Lactam sulfonamides as potent inhibitors of the Kv1.5 potassium ion channel. Bioorg Med Chem Lett 24:1269–1273

    Article  CAS  PubMed  Google Scholar 

  • Ousingsawat J, Spitzner M, Puntheeranurak S, Terracciano L, Tornillo L, Bubendorf L, Kunzelmann K, Schreiber R (2007) Expression of voltage-gated potassium channels in human and mouse colonic carcinoma. Clin Cancer Res 13:824–831

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues ARA, Arantes EC, Monje F, Stühmer W, Varanda WA (2003) Tityustoxin-K(alpha) blockade of the voltage-gated potassium channel Kv1.3. Br J Pharmacol 139:1180–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high frequency repetitive firing. Trends Neurosci 24:517–526

    Article  CAS  PubMed  Google Scholar 

  • Shieh C-C, Coghlan M, Sullivan JP, Gopalakrishnan M (2000) Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 52:557–593

    CAS  PubMed  Google Scholar 

  • Sung MJ, Ahn HS, Hahn SJ, Choi BH (2008) Open channel block of Kv3.1 currents by fluoxetine. J Pharmacol Sci 106:38–45

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT, Scozzafava A, Jurca BC, Ilies MA (1998) Carbonic anhydrase inhibitors—part 49: synthesis of substituted ureido and thioureido derivatives of aromatic/heterocyclic sulfonamides with increased affinities for isozyme I. Eur J Med Chem 33:83–93

    Article  CAS  Google Scholar 

  • Taskin B, von Schoubye NL, Sheykhzade M, Bastlund JF, Grunnet M, Jespersen T (2015) Biophysical characterization of Kv3.1 potassium channel activating compounds. Eur J Pharmacol 758:164–170

    Article  CAS  PubMed  Google Scholar 

  • Wang L-Y, Gan L, Forsythe ID, Kaczmarek LK (1998) Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol 509:183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda T, Cuny H, Adams DJ (2013) Kv3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation. J Physiol 591:2579–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to MSc Carina Couto Martins for synthesis of benzenesulfonamide, to Dr. André Dagostin and Fernando Aguiar for technical assistance; Dr. Dario Zamboni for providing us the wild type L929 cells and Dr. Ricardo Mauricio Leão and Davi Moraes for lab facilities. This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES (PhD fellowship-Carlos Alberto Zanutto Bassetto Jr.) and Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP for research funding of Professors Wamberto Antonio Varanda (2012/19750-7) and Eduardo René Pérez. González (2013/24487-6), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Zanutto Bassetto Junior.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Handling Editor: E. I. Closs.

A correction to this article is available online at https://doi.org/10.1007/s00726-017-2504-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassetto Junior, C.A.Z., Varanda, W.A. & González, E.R.P. 4-Chloro-3-nitro-N-butylbenzenesulfonamide acts on KV3.1 channels by an open-channel blocker mechanism. Amino Acids 49, 1895–1906 (2017). https://doi.org/10.1007/s00726-017-2488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2488-0

Keywords

Navigation