Skip to main content

Advertisement

Log in

Targeting cancer-specific glycans by cyclic peptide lectinomimics

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The transformation from normal to malignant phenotype in human cancers is associated with aberrant cell-surface glycosylation. Thus, targeting glycosylation changes in cancer is likely to provide not only better insight into the roles of carbohydrates in biological systems, but also facilitate the development of new molecular probes for bioanalytical and biomedical applications. In the reported study, we have synthesized lectinomimics based on odorranalectin 1; the smallest lectin-like cyclic peptide isolated from the frog Odorrana grahami skin, and assessed the ability of these peptides to bind specific carbohydrates on molecular and cellular levels. In addition, we have shown that the disulfide bond found in 1 can be replaced with a lactam bridge. However, the orientation of the lactam bridge, peptides 2 and 3, influenced cyclic peptide‘s conformation and thus these peptides’ ability to bind carbohydrates. Naturally occurring 1 and its analog 3 that adopt similar conformation in water bind preferentially l-fucose, and to a lesser degree d-galactose and N-acetyl-d-galactosamine, typically found within the mucin O-glycan core structures. In cell-based assays, peptides 1 and 3 showed a similar binding profile to Aleuria aurantia lectin and these two peptides inhibited the migration of metastatic breast cancer cell lines in a Transwell assay. Altogether, the reported data demonstrate the feasibility of designing lectinomimics based on cyclic peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

RMSD:

Root-mean-square deviation

AAL:

Aleuria aurantia lectin

ASF:

Asialofetuin

BME:

β-Mercaptoethanol

Boc:

Tert-butyloxycarbonyl

BSA:

Bovine serum albumin

CM:

Conditioned medium

CV:

Coefficient of variation

DIC:

Diisopropylcarbodiimide

DMF:

N,N-Dimethylformamide

DMSO:

Dimethyl sulfoxide

FAM:

Fluorescein

FITC:

Fluorescein isothiocyanate

Fmoc:

Fluorenylmethyloxycarbonyl

HOBt:

Hydroxybenzotriazole

ITC:

Isothermal titration calorimetry

MALDI–TOF:

Matrix assisted laser desorption/ionization time-of-flight

NMM:

N-Methylmorpholine

PyBOP:

Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate

RP-HPLC:

Reverse-phase high pressure liquid chromatography

RT:

Room temperature

S/B:

Signal-to-background

SNA:

Sambucus nigra lectin

UEA-I:

Ulex europaeus I lectin

SPPS:

Solid-phase peptide synthesis

TFA:

Trifluoroacetic acid, UV–Vis, ultraviolet–visible

References

  • Alsina J, Rabanal F, Giralt E, Albericio F (1994) Solid-phase synthesis of “head-to-tail” cyclic peptides via lysine side-chain anchoring. Tetrahedron Lett 35(51):9633–9635

    Article  CAS  Google Scholar 

  • Ambrosi M, Cameron NR, Davis BG (2005) Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem 3(9):1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Baldus SE, Thiele J, Park Y-O, Hanishi F-G, Bara J, Fischer R (1996) Characterization of the binding specificity of Anguilla anguilla agglutinin (AAA) in comparison to Ulex europaeus agglutinin I (UEA-I). Glyconj J 13(4):585–590

    Article  CAS  Google Scholar 

  • Brannon JR, Thomassin JL, Gruenheid S, Le Moual H (2015) Antimicrobial peptide conformation as a structural determinant of omptin protease specificity. J Bacteriol 197(22):3583–3591. doi:10.1128/JB.00469-15 (pii:JB.00469-15)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P (2010) Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res 12(3):204–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Cline LL, Waters ML (2009) The structure of well-folded beta-hairpin peptides promotes resistance to peptidase degradation. Biopolymers 92(6):502–507. doi:10.1002/bip.21266

    Article  CAS  PubMed  Google Scholar 

  • Dall’Olio F, Malagolini N, Chiricolo M (2012) Glycosylation in cancer. Carbohydr Chem 37:21–56

    Article  Google Scholar 

  • Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA (2014) Emerging principles for the therapeutic exploitation of glycosylation. Science 343(6166):1235681

    Article  PubMed  Google Scholar 

  • Dennington R, Keith T, Millam J (2009) Gauss View, version 5, Semichem Inc., Shawnee Mission

  • Drake RR (2015) Glycosylation and cancer: moving glycomics to the forefront. Adv Cancer Res 126:1–10

    Article  PubMed  Google Scholar 

  • Fazio MA, Oliveira VX, Bulet P, Miranda MTM, Daffre S, Miranda A (2006) Structure-activity relationship studies of gomesin: importance of the disulfide bridges for conformation, bioactivities, and serum stability. Biopolymers 84(2):205–218

    Article  CAS  PubMed  Google Scholar 

  • Feng D, Shaikh AS, Wang F (2016) Recent advance in tumor-associated carbohydrate antigens (TACAs)-based antitumor vaccines. ACS Chem Biol 11(4):850–863

    Article  CAS  PubMed  Google Scholar 

  • Fiedler W, DeDosso S, Cresta S, Weidmann J, Tessari A, Salzberg M, Dietrich B, Baumeister H, Goletz S, Gianni L, Sessa C (2016) A phase I study of PankoMab-GEX, a humanised glyco-optimised monoclonal antibody to a novel tumour-specific MUC1 glycopeptide epitope in patients with advanced carcinomas. Eur J Cancer 63:55–63

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Mader O, Jung G, Brock R (2003) Extending the applicability of carboxyfluorescein in solid-phase synthesis. Bioconjugate Chem 14(3):653–660

    Article  Google Scholar 

  • Flora D, Mo H, Mayer JP, Khan MA, Yan LZ (2005) Detection and control of aspartimide formation in the synthesis of cyclic peptides. Bioorg Med Chem Lett 15:1065–1068

    Article  CAS  PubMed  Google Scholar 

  • Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09. Gaussian Inc, Wallingford, p 4

    Google Scholar 

  • Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5(7):526–542

    Article  CAS  PubMed  Google Scholar 

  • Gazal S, Gelerman G, Ziv O, Karpov O, Litman P, Bracha M, Afargan M, Gilon C (2002) Human somatostatin receptor specificity of backbone-cyclic analogues containing novel sulfur building units. J Med Chem 45(8):1665–1671

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Martinez P, Dessolin M, Guibe F, Albericio F (1999) N α-Alloc temporary protection in solid-phase peptide synthesis. The use of amine-borane complexes as allyl group scavengers. J Chem Soc Perkin Trans 1(20):2871–2874

    Article  Google Scholar 

  • Gongora-Benitez M, Tulla-Puche J, Albericio F (2014) Multifaceted roles of disulfide bonds. Peptides as Therapeutics. Chem Rev 114(2):901–926

    Article  CAS  PubMed  Google Scholar 

  • Green ED, Adelt G, Baenziger JU, Wilson S, Van Halbeek H (1988) The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz proton NMR spectroscopy. J Biol Chem 263(34):18253–18268

    CAS  PubMed  Google Scholar 

  • Hakomori SI, Cummings RD (2012) Glycosylation effects on cancer development. Glycoconj J 29(8–9):565–566

    Article  CAS  PubMed  Google Scholar 

  • Hakomori S, Kannagi R (1983) Glycosphingolipids as tumor-associated and differentiation markers. J Natl Cancer Inst 71:231–251

    CAS  PubMed  Google Scholar 

  • Hargittai B, Sole´ NA, Groebe DR, Abramson SN, Barany G (2000) Chemical syntheses and biological activites of lactam analogues of α-conotoxin SI. J Med Chem 43(25):4787–4792

    Article  CAS  PubMed  Google Scholar 

  • Häuselmann I, Borsig L (2014) Altered tumor-cell glycosylation promotes metastasis. Front Oncol 4(28):1–15

    Google Scholar 

  • Hossain K, Wall KA (2016) Immunological evaluation of recent MUC1 glycopeptide cancer vaccines. Vaccines 4(3):E25

    Article  PubMed  Google Scholar 

  • Jessani N, Niessen S, Mueller BM, Cravatt BF (2005) Breast cancer cell lines grown in vivo: what goes in isn’t always the same as what comes out. Cell Cycle 4(2):253–255

    Article  CAS  PubMed  Google Scholar 

  • Kamber B, Hartmenn A, Eisler K, Riniker B, Rink H, Siber P, Rittel W (1980) The synthesis of cystein peptides by iodine oxidation of S-trytil-cysteine and S-acetamidomethyl-cysteine peptides. Helv Chim Acta 63:899–915

    Article  CAS  Google Scholar 

  • Li P, Roller PP, Xu J (2002) Current synthetic approaches to peptide and peptidomimetic cyclization. Curr Org Chem 6(5):411–440

    Article  CAS  Google Scholar 

  • Li J, Wu H, Hong J, Xu X, Yang H, Wu B, Wang Y, Zhu J, Lai R, Jiang X, Lin D, Prescott MC, Rees HH (2008) Odorranalectin is a small peptide lectin with potential for drug delivery and targeting. PLoS ONE 3(6):2381–2391

    Article  Google Scholar 

  • Liskamp RMJ, Rijkers DTS, Kruijtzer JAW, Kemmick J (2011) Peptides and proteins as a continuing exciting source of inspiration for peptidomimetics. ChemBioChem 12(11):1626–1653

    Article  CAS  PubMed  Google Scholar 

  • Loffet A (2002) Peptides as drugs: is there a market? J Pept Sci 8:1–7

    Article  CAS  PubMed  Google Scholar 

  • Loureiro LR, Carrascal MA, Barbas A, Ramalho JS, Novo C, Delannoy P, Videira P (2015) Challenges in antibody development against Tn and Sialyl-Tn antigens. Biomolecules 5(3):1783–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald DM, Byrne SN, Payne RJ (2015) Synthetic self-adjuvanting glycopeptide cancer vaccines. Front Chem 3(60):1–8

    CAS  Google Scholar 

  • Meinander K, Pakkala M, Weisell J, Stenman UH, Koistinen H, Narvanen A, Wallen EAA (2014) Replacement of the disulfide bridge in a KLK3-stimulating peptide using orthogonally protected building blocks. ACS Med Chem Lett 5(2):162–165

    Article  CAS  PubMed  Google Scholar 

  • Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE (2006) Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinform 7(1):1

    Article  Google Scholar 

  • Miyoshi E, Moriwaki K, Terao N, Tan C-C, Terao M, Nakagawa T, Matsumoto H, Shinzaki S, Kamada Y (2012) Fucosylation is a promising target for cancer diagnosis and therapy. Biomolecules 2(1):34–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comp Chem 30(16):2785–2791

    Article  CAS  Google Scholar 

  • Muller S, Hanisch F-G (2002) Recombinant MUC1 probe authentically reflects cell-specific O-glycosylation profiles of endogenous breast cancer mucin: high density andd prevalent core 2-based glycosylation. J Biol Chem 277:26103–26112

    Article  CAS  PubMed  Google Scholar 

  • Munkley J, Elliott DJ (2016) Hallmarks of glycosylation in cancer. Oncotarget 7(23):35478–35489

    Article  PubMed  PubMed Central  Google Scholar 

  • Nath S, Mukherjee P (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 20(6):332–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15:540–555

    Article  CAS  PubMed  Google Scholar 

  • Pipkorn R, Rawer S, Wiessler M, Waldek W, Koch M, Schrenk H, Braun K (2013) SPPS resins impact the PNA-syntheses’ improvement. Int J Med Sci 10:331–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Samsonov SA, Teyra J, Pisabarro MT (2011) Docking glycosaminoglycans to proteins: analysis of solvent inclusion. J Comput Aided Mol Des 25(5):477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya N, Goldstein I, Broekaert W, Nsimba-Lubaki M, Peeters B, Peumans W (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem 262:1596–1601

    CAS  PubMed  Google Scholar 

  • Song X, Heimburg-Molinaro J, Smith DF, Cummings RD (2012) Glycan microarrays. Methods Mol Biol 800:163–171

    Article  CAS  PubMed  Google Scholar 

  • Spiro R, Bhoyroo V (1974) Structure of the O-glycosidically linked carbohydrate units of fetuin. J Biol Chem 249:5704–5717

    CAS  PubMed  Google Scholar 

  • Sterner E, Flanagan N, Gildersleeve JC (2016) Perspectives on anti-glycan antibodies gleaned from development of a community resource database. ACS Chem Biol 11(7):1773–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stowell SR, Ju T, Cummings RD (2015) Protein glycosylation in cancer. Annu Rev Pathol 10:473–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subiros-Funosas R, El-Faham A, Albericio F (2011) Aspartimide formation in peptide chemistry: ocurrence, prevention strategies and the role of N-hydroxylamines. Tetrahedron 67:8595–8606

    Article  CAS  Google Scholar 

  • Tang H, Hsueh P, Kletter D, Bern M, Haab B (2015) The detection and discovery of glycan motifs in biological samples using lectins and antibodies: new methods and opportunities. Adv Cancer Res 126:167–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Veronese FM, Mero A (2008) The impact of PEGylation on biological therapies. BioDrugs 22(5):315–329

    Article  CAS  PubMed  Google Scholar 

  • Wimmerova M, Mitchell E, Sanchez J-F, Gautier C, Imberty A (2003) Crystal structure of fungal lectins: six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J Biol Chem 278:27059–27067

    Article  CAS  PubMed  Google Scholar 

  • Yuan K, Kucik D, Sigh RK, Listinsky CM, Listinsky JL, Siegal GP (2008) Alterations in human breast cancer adhesion-motility in response to changes in cell surface glycoproteins α-l-fucose moieties. Int J Oncol 32(4):797–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HB, Chi YS, Huang WL, Ni SJ (2007) Total synthesis of human urotensin-II by microwave-assisted solid phase method. Chin Chem Lett 18:902–904

    Article  CAS  Google Scholar 

  • Zhao Y-J, Ju Q, Li G-C (2013) Tumor markers for hepatocellular carcinoma. Mol Clin Oncol 1(4):593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Anna Knapinska for providing tissue-culture expertise and Ms. Karen Gottwald for editing of the manuscript. This work was partly supported by the Florida Atlantic University [start-up funds to M.C.]; and the National Institutes of Health [National Institute on Drug Abuse (NIDA) RDA039722A to P.C. and National Cancer Institute (NCI) CA178754 to M.C.]. K.M.M. thanks Instituto de Química, UNAM for financing support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mare Cudic or Predrag Cudic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any other authors.

Additional information

Handling Editor: F. Albericio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, M.C., Yongye, A.B., Cudic, M. et al. Targeting cancer-specific glycans by cyclic peptide lectinomimics. Amino Acids 49, 1867–1883 (2017). https://doi.org/10.1007/s00726-017-2485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2485-3

Keywords

Navigation